Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2018

University of Nevada, Las Vegas

Chemistry and Biochemistry Faculty Research

Molecular processes

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Collisional Quenching Of Highly Excited H2 Due To H2 Collisions, Yier Wan, B. H. Yang, P. C. Stancil, Balakrishnan Naduvalath, Nikhil J. Parekh, R. C. Forrey Jul 2018

Collisional Quenching Of Highly Excited H2 Due To H2 Collisions, Yier Wan, B. H. Yang, P. C. Stancil, Balakrishnan Naduvalath, Nikhil J. Parekh, R. C. Forrey

Chemistry and Biochemistry Faculty Research

Rate coefficients for pure rotational quenching in H2(ν 1 = 0, j 1) + H2(ν 2 = 0, j 2) collisions from initial levels of j 1 = 2–31 (j 2 = 0 or 1) to all lower rotational levels are presented. We carried out extensive quantum mechanical close-coupling calculations based on a recently published H2–H2 potential energy surface (PES) developed by Patkowski et al. that has been demonstrated to be more reliable than previous work. Rotational transition cross sections with initial levels of j 1 = 2–14, 18, 19, 24, and 25 were computed for energies ranging from 10−6 …