Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Unsupervised Topic Hypergraph Hashing For Efficient Mobile Image Retrieval, Lei Zhu, Jialie Shen, Liang Xie, Zhiyong Cheng Nov 2017

Unsupervised Topic Hypergraph Hashing For Efficient Mobile Image Retrieval, Lei Zhu, Jialie Shen, Liang Xie, Zhiyong Cheng

Research Collection School Of Computing and Information Systems

Hashing compresses high-dimensional features into compact binary codes. It is one of the promising techniques to support efficient mobile image retrieval, due to its low data transmission cost and fast retrieval response. However, most of existing hashing strategies simply rely on low-level features. Thus, they may generate hashing codes with limited discriminative capability. Moreover, many of them fail to exploit complex and high-order semantic correlations that inherently exist among images. Motivated by these observations, we propose a novel unsupervised hashing scheme, called topic hypergraph hashing (THH), to address the limitations. THH effectively mitigates the semantic shortage of hashing codes by …


Deepfacade: A Deep Learning Approach To Facade Parsing, Hantang Liu, Jialiang Zhang, Jianke Zhu, Steven C. H. Hoi Aug 2017

Deepfacade: A Deep Learning Approach To Facade Parsing, Hantang Liu, Jialiang Zhang, Jianke Zhu, Steven C. H. Hoi

Research Collection School Of Computing and Information Systems

The parsing of building facades is a key component to the problem of 3D street scenes reconstruction, which is long desired in computer vision. In this paper, we propose a deep learning based method for segmenting a facade into semantic categories. Man-made structures often present the characteristic of symmetry. Based on this observation, we propose a symmetric regularizer for training the neural network. Our proposed method can make use of both the power of deep neural networks and the structure of man-made architectures. We also propose a method to refine the segmentation results using bounding boxes generated by the Region …


Object Detection Meets Knowledge Graphs, Yuan Fang, Kingsley Kuan, Jie Lin, Cheston Tan, Vijay Chandrasekhar Aug 2017

Object Detection Meets Knowledge Graphs, Yuan Fang, Kingsley Kuan, Jie Lin, Cheston Tan, Vijay Chandrasekhar

Research Collection School Of Computing and Information Systems

Object detection in images is a crucial task in computer vision, with important applications ranging from security surveillance to autonomous vehicles. Existing state-of-the-art algorithms, including deep neural networks, only focus on utilizing features within an image itself, largely neglecting the vast amount of background knowledge about the real world. In this paper, we propose a novel framework of knowledge-aware object detection, which enables the integration of external knowledge such as knowledge graphs into any object detection algorithm. The framework employs the notion of semantic consistency to quantify and generalize knowledge, which improves object detection through a re-optimization process to achieve …


Formresnet: Formatted Residual Learning For Image Restoration, Jianbo Jiao, Wei-Chih Tu, Shengfeng He Aug 2017

Formresnet: Formatted Residual Learning For Image Restoration, Jianbo Jiao, Wei-Chih Tu, Shengfeng He

Research Collection School Of Computing and Information Systems

In this paper, we propose a deep CNN to tackle the image restoration problem by learning the structured residual. Previous deep learning based methods directly learn the mapping from corrupted images to clean images, and may suffer from the gradient exploding/vanishing problems of deep neural networks. We propose to address the image restoration problem by learning the structured details and recovering the latent clean image together, from the shared information between the corrupted image and the latent image. In addition, instead of learning the pure difference (corruption), we propose to add a 'residual formatting layer' to format the residual to …


Deshadownet: A Multi-Context Embedding Deep Network For Shadow Removal, Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong Tang, Rynson W. H. Lau Jul 2017

Deshadownet: A Multi-Context Embedding Deep Network For Shadow Removal, Liangqiong Qu, Jiandong Tian, Shengfeng He, Yandong Tang, Rynson W. H. Lau

Research Collection School Of Computing and Information Systems

Shadow removal is a challenging task as it requires the detection/annotation of shadows as well as semantic understanding of the scene. In this paper, we propose an automatic and end-to-end deep neural network (DeshadowNet) to tackle these problems in a unified manner. DeshadowNet is designed with a multi-context architecture, where the output shadow matte is predicted by embedding information from three different perspectives. The first global network extracts shadow features from a global view. Two levels of features are derived from the global network and transferred to two parallel networks. While one extracts the appearance of the input image, the …