Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Operating Temperature Of A Solar Thermal Stirling Engine, Spencer Beck May 2017

Operating Temperature Of A Solar Thermal Stirling Engine, Spencer Beck

Senior Theses

This paper explores the relationship between the operating temperature and electricity production of a simple heat engine. A Stirling engine was designed and constructed which runs on solar thermal energy collected by a Fresnel lens. The surface area of the solar collector was varied. This manipulated the operating temperature of the Stirling engine in order to measure power output. The mechanical energy from the engine was converted to electricity using a DC motor running in reverse, acting like a generator, in conjunction with an Arduino for data collection. Although adjustments must be made in order to improve the efficiency of …


Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams May 2017

Are Solar Panels A Viable Power Source For A Green Energy Vehicle?, Mason C. Adams

Senior Theses

A solar cell powered go-kart has been built and tested. The result shows using solar energy alone cannot meet the requirement of running a regular passenger car. This is due to the limited surface area of the passenger car. This thesis also discusses the operating principles of solar panels, the physics of P type and N type semiconductors, and the formation of the PN junction, as well as the solar current. Modifications of an existing go-kart are described in detail in this thesis. Suggestions for making green vehicles are discussed as well.


Hardware Design Theory (Using Raspberry Pi), Anthony Kelly, Thomas Blum Dr. May 2017

Hardware Design Theory (Using Raspberry Pi), Anthony Kelly, Thomas Blum Dr.

Undergraduate Research

The concept for this research proposal is focused on achieving three main objectives:

1) To understand the logic and design behind the Raspberry Pi (RbP) mini-computer model, including: all hardware components and their functions, the capabilities [and limits] of the RbP, and the circuit engineering for these components.

2) To be able to, using the Python high-level language, duplicate, manipulate, and create RbP projects ranging from basic user-input and response systems to the theories behind more intricate and complicated observatory sensors.

3) Simultaneously, in order to combine a mutual shared interest of History and to blend in work done within …