Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Real-Space Mean-Field Theory Of A Spin-1 Bose Gas In Synthetic Dimensions, Hilary M. Hurst, Justin H. Wilson, J. H. Pixley, I. B. Spielman, Stefan S. Natu Dec 2016

Real-Space Mean-Field Theory Of A Spin-1 Bose Gas In Synthetic Dimensions, Hilary M. Hurst, Justin H. Wilson, J. H. Pixley, I. B. Spielman, Stefan S. Natu

Faculty Research, Scholarly, and Creative Activity

The internal degrees of freedom provided by ultracold atoms give a route for realizing higher dimensional physics in systems with limited spatial dimensions. Non-spatial degrees of freedom in these systems are dubbed "synthetic dimensions". This connection is useful from an experimental standpoint but complicated by the fact that interactions alter the condensate ground state. Here we use the Gross-Pitaevskii equation to study ground state properties of a spin-1 Bose gas under the combined influence of an optical lattice, spin-orbit coupling, and interactions at the mean field level. The associated phases depend on the sign of the spin-dependent interaction parameter and …


"Blinded By The Lines: Mid-Ir Spectra Of Mira Variables Taken With Spitzer", Dana Baylis-Aguirre, Michelle J. Creech-Eakman, Donald G. Luttermoser, Tina Gueth Sep 2016

"Blinded By The Lines: Mid-Ir Spectra Of Mira Variables Taken With Spitzer", Dana Baylis-Aguirre, Michelle J. Creech-Eakman, Donald G. Luttermoser, Tina Gueth

ETSU Faculty Works

We present preliminary analysis of mid-infrared spectra of M-type and C-type Mira variables. Due to the brightness of this sample, it is straightforward to monitor changes with phase in the infrared spectral features of these regular pulsators. We have spectra of 25 Mira variables, taken with phase, using the Spitzer Infrared Spectrograph (IRS) high-resolution module. Each star has multiple spectra obtained over a one-year period from 2008-09. This is a rich, unique data set due to multiple observations of each star and the high signal-to-noise ratio from quick exposure times to prevent saturation of the IRS instrument. This paper focuses …


Modeling X-Ray Emission Line Profiles From Massive Star Winds - A Review, Richard Igance Sep 2016

Modeling X-Ray Emission Line Profiles From Massive Star Winds - A Review, Richard Igance

ETSU Faculty Works

The Chandra and XMM-Newton X-ray telescopes have led to numerous advances in the study and understanding of astrophysical X-ray sources. Particularly important has been the much increased spectral resolution of modern X-ray instrumentation. Wind-broadened emission lines have been spectroscopically resolved for many massive stars. This contribution reviews approaches to the modeling of X-ray emission line profile shapes from single stars, including smooth winds, winds with clumping, optically thin versus thick lines, and the effect of a radius-dependent photoabsorption coefficient.


Transport Of Dirac Electrons In A Random Magnetic Field In Topological Heterostructures, Hilary M. Hurst, Dimitry K. Efimkin, Victor Galitski Jun 2016

Transport Of Dirac Electrons In A Random Magnetic Field In Topological Heterostructures, Hilary M. Hurst, Dimitry K. Efimkin, Victor Galitski

Faculty Research, Scholarly, and Creative Activity

We consider the proximity effect between Dirac states at the surface of a topological insulator and a ferromagnet with easy plane anisotropy, which is described by the XY model and undergoes a Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The surface states of the topological insulator interacting with classical magnetic fluctuations of the ferromagnet can be mapped onto the problem of Dirac fermions in a random magnetic field. However, this analogy is only partial in the presence of electron-hole asymmetry or warping of the Dirac dispersion, which results in screening of magnetic fluctuations. Scattering at magnetic fluctuations influences the behavior of the surface …


X-Ray Observations Of Bow Shocks Around Runaway O Stars. The Case Of Ζ Oph And Bd+43°3654, Jesus Toala, Lidia M. Oskinova, A. González-Galán, M. A. Guerrero, Richard Ignace, M. Pohl Apr 2016

X-Ray Observations Of Bow Shocks Around Runaway O Stars. The Case Of Ζ Oph And Bd+43°3654, Jesus Toala, Lidia M. Oskinova, A. González-Galán, M. A. Guerrero, Richard Ignace, M. Pohl

ETSU Faculty Works

Non-thermal radiation has been predicted within bow shocks around runaway stars by recent theoretical works. We present X-ray observations toward the runaway stars ζ Oph by Chandra and Suzaku and of BD+43°3654 by XMM-Newton to search for the presence of non-thermal X-ray emission. We found no evidence of non-thermal emission spatially coincident with the bow shocks; nonetheless, diffuse emission was detected in the vicinity of ζ Oph. After a careful analysis of its spectral characteristics, we conclude that this emission has a thermal nature with a plasma temperature of T ≈ 2 × 106 K. The cometary shape of this …


Photoinduced Femtosecond Relaxation Of Antiferromagnetic Orders In The Iron Pnictides Revealed By Ultrafast Laser Ellipsometry, Aaron E. Patz, Tianqi Li, Sheng Ran, Sergey L. Bud'ko, Paul C. Canfield, Jigang Wang Mar 2016

Photoinduced Femtosecond Relaxation Of Antiferromagnetic Orders In The Iron Pnictides Revealed By Ultrafast Laser Ellipsometry, Aaron E. Patz, Tianqi Li, Sheng Ran, Sergey L. Bud'ko, Paul C. Canfield, Jigang Wang

Jigang Wang

We report ultrafast softening of the antiferromagnetic order, ~150fs after the electron thermalization, which follows a two-step recovery pathway to reveal a distinct interplay of magnetism and the nematic order in iron pnictides.


Molecular Mechanisms Of Protein Thermal Stability, Lucas Sawle Jan 2016

Molecular Mechanisms Of Protein Thermal Stability, Lucas Sawle

Electronic Theses and Dissertations

Organisms that thrive under extreme conditions, such as high salt concentration, low pH, or high temperature, provide an opportunity to investigate the molecular and cellular strategies these organisms have adapted to survive in their harsh environments. Thermophilic proteins, those extracted from organisms that live at high temperature, maintain their structure and function at much higher temperatures compared to their mesophilic counterparts, found in organisms that live near room temperature. Thermophilic and mesophilic homolog protein pairs have identical functionality, and show a high degree of structural and sequential similarity, but differ significantly in their response to high temperature. Addressing the principles …