Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2015

Publications and Research

Materials Chemistry

Solar cells

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Molecular Helices As Electron Acceptors In High-Performance Bulk Heterojunction Solar Cells, Yu Zhong, M. Tuan Trinh, Rongsheng Chen, Geoffrey E. Purdum, Petr P. Khlyabich, Melda Sezen, Seokjoon Oh, Haiming Zhu, Brandon Fowler, Boyuan Zhang, Wei Wang, Chang-Yong Nam, Matthew Y. Sfeir, Charles T. Black, Michael L. Steigerwald, Yueh-Lin Loo, Fay Ng, X.-Y. Zhu, Colin Nuckolls Sep 2015

Molecular Helices As Electron Acceptors In High-Performance Bulk Heterojunction Solar Cells, Yu Zhong, M. Tuan Trinh, Rongsheng Chen, Geoffrey E. Purdum, Petr P. Khlyabich, Melda Sezen, Seokjoon Oh, Haiming Zhu, Brandon Fowler, Boyuan Zhang, Wei Wang, Chang-Yong Nam, Matthew Y. Sfeir, Charles T. Black, Michael L. Steigerwald, Yueh-Lin Loo, Fay Ng, X.-Y. Zhu, Colin Nuckolls

Publications and Research

Despite numerous organic semiconducting materials synthesized for organic photovoltaics in the past decade, fullerenes are widely used as electron acceptors in highly efficient bulk-heterojunction solar cells. None of the non-fullerene bulk heterojunction solar cells have achieved efficiencies as high as fullerene-based solar cells. Design principles for fullerene-free acceptors remain unclear in the field. Here we report examples of helical molecular semiconductors as electron acceptors that are on par with fullerene derivatives in efficient solar cells. We achieved an 8.3% power conversion efficiency in a solar cell, which is a record high for non-fullerene bulk heterojunctions. Femtosecond transient absorption spectroscopy revealed …