Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Physical Sciences and Mathematics

Postcollision Effects In Target Ionization By Ion Impact At Large Momentum Transfer, Michael Schulz, B. Najjari, Alexander B. Voitkiv, Katharina R. Schneider, Xincheng Wang, Aaron C. Laforge, Renate Hubele, Johannes Goullon, Natalia Ferreira, Aditya H. Kelkar, Manfred Grieser, Robert Moshammer, Joachim Hermann Ullrich, Daniel Fischer Aug 2013

Postcollision Effects In Target Ionization By Ion Impact At Large Momentum Transfer, Michael Schulz, B. Najjari, Alexander B. Voitkiv, Katharina R. Schneider, Xincheng Wang, Aaron C. Laforge, Renate Hubele, Johannes Goullon, Natalia Ferreira, Aditya H. Kelkar, Manfred Grieser, Robert Moshammer, Joachim Hermann Ullrich, Daniel Fischer

Physics Faculty Research & Creative Works

We have measured and calculated fully differential cross sections for target ionization in 16-MeV O7++He and 24-MeV O8++Li collisions. As in previous studies, in the case of the He target we observe a pronounced forward shift in the angular distribution of the electrons relative to the direction of the momentum transfer q at small q (q < 1 a.u.). An unexpected result is that we also find a strong forward shift at large q (q > 2 a.u.), while at intermediate q this shift becomes very weak or even turns into a backward shift. For the Li target, in contrast, the forward shift monotonically increases with increasing q. These observations are qualitatively reproduced by our calculations. …


A Conductive Polypyrrole-Coated, Sulfur-Carbon Nanotube Composite For Use In Lithium-Sulfur Batteries, Jianli Wang, Lin Lu, Dongqi Shi, Richard Tandiono, Zhaoxiang Wang, Konstantin Konstantinov, Hua Liu Jul 2013

A Conductive Polypyrrole-Coated, Sulfur-Carbon Nanotube Composite For Use In Lithium-Sulfur Batteries, Jianli Wang, Lin Lu, Dongqi Shi, Richard Tandiono, Zhaoxiang Wang, Konstantin Konstantinov, Hua Liu

Jianli Wang

A novel ternary composite, polypyrrole (PPy)-coated sulphur-carbon nanotube (S-CNT), is synthesised by using an in situ, one-pot method. Firstly, elemental sulfur is loaded into the CNT network by a solution-based processing technique. Then conducting PPy is coated on the surface of the S-CNT composite to form the S-CNT-PPy ternary composite by carrying out polymerization of the pyrrole monomer in situ. The ternary composite is tested as a cathode for lithium-sulfur batteries. The results show that PPy coating improves significantly the performance of the binary composites (S-CNT and S-PPy). The conducting PPy is believed to serve multiple functions in the composite: …


Nano-Structured Sno2-Carbon Composites Obtained By In Situ Spray Pyrolysis Method As Anodes In Lithium Batteries, Ling Yuan, Konstantin Konstantinov, Guoxiu Wang, Hua-Kun Liu, S X. Dou Jun 2013

Nano-Structured Sno2-Carbon Composites Obtained By In Situ Spray Pyrolysis Method As Anodes In Lithium Batteries, Ling Yuan, Konstantin Konstantinov, Guoxiu Wang, Hua-Kun Liu, S X. Dou

Shi Xue Dou

In this paper, we report on a series of SnO2-carbon nano-composites synthesized by in situ spray pyrolysis of a solution of SnCl2·2H2O and sucrose at 700 °C. The process results in super fine nanocrystalline SnO2, which is homogeneously distributed inside the amorphous carbon matrix. The SnO2 was revealed as a structure of broken hollow spheres with porosity on both the inside and outside particle surfaces. This structure promises a highly developed specific surface area. X-ray diffraction (XRD) patterns and transmission electron microscope (TEM) images revealed the SnO2 crystal size is about 5–15 nm. These composites show a reversible lithium storage …


In Situ Growth Of Sno2 On Graphene Nanosheets As Advanced Anode Materials For Rechargeable Lithium Batteries, Xiaowei Yang, Yu-Shi He, Xiao-Zhen Liao, Jun Chen, Gordon G. Wallace, Zi-Feng Ma Mar 2013

In Situ Growth Of Sno2 On Graphene Nanosheets As Advanced Anode Materials For Rechargeable Lithium Batteries, Xiaowei Yang, Yu-Shi He, Xiao-Zhen Liao, Jun Chen, Gordon G. Wallace, Zi-Feng Ma

Gordon Wallace

Graphene with a single layer of carbon atoms densely packed in a honeycomb crystal lattice is one of attractive materials for the intercalation of lithium ion, but it has low volumetric capacity owing to low tap density. We report a method for in situ growth of SnO2 on graphene nanosheets (SGN) as anode materials for rechargeable lithium batteries. The results indicated that the SnO2 nanoparticles with size in the range of 5-10 nm and a polycrystalline structure are homogeneously supported on graphene nanosheets. The charge and discharge capacities of SGN attained to 1559.7 and 779.7 mAh/g in the first cycle …


Polarization And Interference Effects In Ionization Of Li By Ion Impact, Renate Hubele, Aaron C. Laforge, Michael Schulz, Johannes Goullon, Xincheng Wang, B. Najjari, Natalia Ferreira, Manfred Grieser, Vitor L B D De Jesus, Robert Moshammer, Katharina R. Schneider, Alexander B. Voitkiv, Daniel Fischer Mar 2013

Polarization And Interference Effects In Ionization Of Li By Ion Impact, Renate Hubele, Aaron C. Laforge, Michael Schulz, Johannes Goullon, Xincheng Wang, B. Najjari, Natalia Ferreira, Manfred Grieser, Vitor L B D De Jesus, Robert Moshammer, Katharina R. Schneider, Alexander B. Voitkiv, Daniel Fischer

Physics Faculty Research & Creative Works

We present initial-state selective fully differential cross sections for ionization of lithium by 24 MeV O8+ impact. The data for ionization from the 2s and 2p states look qualitatively different from each other and from 1s ionization of He. For ionization from the 2p state, to which in our study the mL=-1 substate predominantly contributes, we observe orientational dichroism and for 2s ionization pronounced interference which we trace back to the nodal structure of the initial-state wave function.


Flexible Free-Standing Graphene-Silicon Composite Film For Lithium-Ion Batteries, Jiazhao Wang, Chao Zhong, Shulei Chou, Hua Liu Feb 2013

Flexible Free-Standing Graphene-Silicon Composite Film For Lithium-Ion Batteries, Jiazhao Wang, Chao Zhong, Shulei Chou, Hua Liu

Shulei Chou

Flexible, free-standing, paper-like, graphene-silicon composite materials have been synthesized by a simple, one-step, in-situ filtration method. The Si nanoparticles are highly encapsulated in a graphene nanosheet matrix. The electrochemical results show that graphene-Si composite film has much higher discharge capacity beyond 100 cycles (708 mAh g− 1) than that of the cell with pure graphene (304 mAh g− 1). The graphene functions as a flexible mechanical support for strain release, offering an efficient electrically conducting channel, while the nanosized silicon provides the high capacity.


Nanocrystalline Nio Hollow Spheres In Conjunction With Cmc For Lithium-Ion Batteries, Chao Zhong, Jiazhao Wang, Shulei Chou, Konstantin Konstantinov, Mokhlesur Rahman, Hua Liu Feb 2013

Nanocrystalline Nio Hollow Spheres In Conjunction With Cmc For Lithium-Ion Batteries, Chao Zhong, Jiazhao Wang, Shulei Chou, Konstantin Konstantinov, Mokhlesur Rahman, Hua Liu

Shulei Chou

Hollow spherical NiO particles were prepared using the spray pyrolysis method with different concentrations of precursor. The electrochemical properties of the NiO electrodes, which contained a new type of binder, carboxymethyl cellulose (CMC), were examined for comparison with NiO electrodes with polyvinylidene fluoride (PVDF) binder. The electrochemical performance of NiO electrodes using CMC binder was significantly improved. For the cell made from 0.3 mol L−1 precursor, the irreversible capacity loss between the first discharge and charge is about 43 and 24% for the electrode with PVDF and CMC binder, respectively. The cell with NiO–CMC electrode has a much higher discharge …


Free-Standing Single-Walled Carbon Nanotube/Sno2 Anode Paper For Flexible Lithium-Ion Batteries, Lukman Noerochim, Jia-Zhao Wang, Shulei Chou, David Wexler Feb 2013

Free-Standing Single-Walled Carbon Nanotube/Sno2 Anode Paper For Flexible Lithium-Ion Batteries, Lukman Noerochim, Jia-Zhao Wang, Shulei Chou, David Wexler

Shulei Chou

Free-standingsingle-walledcarbonnanotube/SnO2 (SWCNT/SnO2) anodepaper was prepared by vacuum filtration of SWCNT/SnO2 hybrid material which was synthesized by the polyol method. From field emission scanning electron microscopy and transmission electron microscopy, the CNTs form a three-dimensional nanoporous network, in which ultra-fine SnO2 nanoparticles, which had crystallite sizes of less than 5 nm, were distributed, predominately as groups of nanoparticles on the surfaces of singlewalled CNT bundles. Electrochemical measurements demonstrated that the anodepaper with 34 wt.% SnO2 had excellent cyclic retention, with the high specific capacity of 454 mAh g−1 beyond 100 cycles at a current …


Irradiation Si On Carbon Nanotube Paper As A Flexible Anode Material For Lithium-Ion Batteries, Shulei Chou, Mihail Ionescu, Jia-Zhao Wang, Brad Winton, Hua Liu Feb 2013

Irradiation Si On Carbon Nanotube Paper As A Flexible Anode Material For Lithium-Ion Batteries, Shulei Chou, Mihail Ionescu, Jia-Zhao Wang, Brad Winton, Hua Liu

Shulei Chou

Silicon single walled carbon nanotube composite paper was modified by low energy ion implantation using 5i to obtain a flexible composite paper. Raman and FE-SEM results show that structure of SWCNT could be destroyed by the implantation. Electrochemical measurements display that the implanted SI can improve the specific capacity and the reversible capacity of CNT paper. After 50 cycles, the specific capacity of 5Hmplanted CNT paper is 30 per cent higher than the pristine CNT.


Spinel Linixmn2-Xo4 As Cathode Material For Aqueous Rechargeable Lithium Batteries, F X. Wang, S Y. Xiao, Y Shi, L L. Liu, Y S. Zhu, Y P. Wu, J. Z. Wang, R Holze Jan 2013

Spinel Linixmn2-Xo4 As Cathode Material For Aqueous Rechargeable Lithium Batteries, F X. Wang, S Y. Xiao, Y Shi, L L. Liu, Y S. Zhu, Y P. Wu, J. Z. Wang, R Holze

Australian Institute for Innovative Materials - Papers

Ni-doped spinel LiNixMn2-xO4 (x = 0, 0.05, 0.10) samples were prepared by a sol-gel method. Structure and morphology of the samples were characterized by X-ray diffraction, scanning electron microscopy, Brunnauer-Emmet-Teller method and inductively coupled plasma atomic absorption spectrometry. The electrochemical behavior as a cathode material (positive mass) for aqueous rechargeable lithium batteries (ARLBs) was investigated by cyclic voltammetry, electrochemical impedance spectroscopy, capacity measurements and cycling tests. The results show that the LiNi 0.1Mn1.9O4 electrode presents the best rate and cycling performance but low reversible capacity. In contrast, the LiNi 0.05Mn1.95O4 electrode shows a higher reversible capacity and relatively good cycling …


Polypyrrole Doped With Redox-Active Poly(2-Methoxyaniline-5-Sulfonic Acid) For Lithium Secondary Batteries, Yang Yang, Caiyun Wang, Syed A. Ashraf, Gordon G. Wallace Jan 2013

Polypyrrole Doped With Redox-Active Poly(2-Methoxyaniline-5-Sulfonic Acid) For Lithium Secondary Batteries, Yang Yang, Caiyun Wang, Syed A. Ashraf, Gordon G. Wallace

Australian Institute for Innovative Materials - Papers

Polypyrrole is a promising electrode material for flexible/bendable energy storage devices due to its inherent fast redox switching, mechanical flexibility, easy processability and being environmentally benign. However, its low attainable capacity limits its practical applications. Here, we synthesise a polypyrrole/poly(2-methoxyaniline-5-sulfonic acid) (PPy/PMAS) composite by incorporating redox-active PMAS into a PPy matrix via an electropolymerization method. For comparison, polypyrrole containing the electrochemically inert dopant p-toluenesulfonate (PPy-pTS) was prepared under the same conditions. The resultant PPy/PMAS film shows greatly improved electrochemical properties by harnessing the contribution from PMAS, i.e. higher specific capacity, better rate capability and improved cycling stability when used as …


Synthesis Of Hollow Geo2 Nanostructures, Transformation Into Geoc, And Lithium Storage Properties, Li Li, Kuok H. Seng, Chuanqi Feng, Hua-Kun Liu, Zaiping Guo Jan 2013

Synthesis Of Hollow Geo2 Nanostructures, Transformation Into Geoc, And Lithium Storage Properties, Li Li, Kuok H. Seng, Chuanqi Feng, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

In this work, we synthesize mesoporous and hollow germanium@carbon nanostructures through simultaneous carbon coating and reduction of a hollow ellipsoidal GeO2 precursor. The formation mechanism of GeO 2 ellipsoids and the ratio of Ge4+ to Sn4+ as the starting materials are also investigated. Compared to the solid ellipsoidal Ge@carbon (Ge@C-3), the hollow ellipsoidal Ge@C-1 sample exhibits better cycling stability (100% capacity retention after 200 cycles at the 0.2 C rate) and higher rate capability (805 mA h g-1 at 20 C) compared to Ge@C-3 due to its unique hollow structure; therefore, this hollow ellipsoidal Ge@carbon can be considered as a …


Zno-Doped Lifepo4 Cathode Material For Lithium-Ion Battery Fabricated By Hydrothermal Method, Yemin Hu, Jun Yao, Zhe Zhao, Mingyuan Zhu, Ying Li, Hongming Jin, Huijun Zhao, Jiazhao Wang Jan 2013

Zno-Doped Lifepo4 Cathode Material For Lithium-Ion Battery Fabricated By Hydrothermal Method, Yemin Hu, Jun Yao, Zhe Zhao, Mingyuan Zhu, Ying Li, Hongming Jin, Huijun Zhao, Jiazhao Wang

Australian Institute for Innovative Materials - Papers

LiFePO4 particles doped with zinc oxide was synthesized via a hydrothermal route and used as cathode material for lithium-ion battery. Sample of preferable shape and structure was obtained by a concise and efficient process. ZnO doping into the LiFePO4 matrix was positively confirmed by the results of X-ray diffraction (XRD); high-resolution transmission electron microscopy (HRTEM); energy dispersive spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS). LiFePO4 doped with ZnO tends to form nanometer-size and homogeneous particles, which can improve markedly the performance and stability of charge-discharge cycle. A specific discharge capacity of ZnO-doped LiFePO4 at 132.3 mAh g-1 was achieved, with …


A Facile Route To Synthesize Transition Metal Oxide/Reduced Graphene Oxide Composites And Their Lithium Storage Performance, Chongjun Zhao, Shulei Chou, Yunxiao Wang, Cuifeng Zhou, Hua-Kun Liu, S X. Dou Jan 2013

A Facile Route To Synthesize Transition Metal Oxide/Reduced Graphene Oxide Composites And Their Lithium Storage Performance, Chongjun Zhao, Shulei Chou, Yunxiao Wang, Cuifeng Zhou, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

Transition metal oxide (Mn3O4, Fe2O3, Co3O4, and ZnO) and reduced graphene oxide (RGO) composites were successfully synthesized via a hydrothermal method using the direct reaction between the corresponding metal powder and graphene oxide (GO). In this process, the GO can be reduced by transition metal powder in water, and the nanosized metal oxide can be obtained, and homogeneously mixed with and wrapped by RGO to form a metal oxide/RGO composite at the same time. X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and scanning and transmission electron microscopy were used to characterize the as-prepared materials. The different experimental parameters, including reactants, …


Hollow Structured Li3vo4 Wrapped With Graphene Nanosheets In Situ Prepared By One-Pot Template-Free Method As An Anode For Lithium-Ion Batteries, Yi Shi, Jia-Zhao Wang, Shulei Chou, David Wexler, Hui-Jun Li, Kiyoshi Ozawa, Hua-Kun Liu, Yu-Ping Wu Jan 2013

Hollow Structured Li3vo4 Wrapped With Graphene Nanosheets In Situ Prepared By One-Pot Template-Free Method As An Anode For Lithium-Ion Batteries, Yi Shi, Jia-Zhao Wang, Shulei Chou, David Wexler, Hui-Jun Li, Kiyoshi Ozawa, Hua-Kun Liu, Yu-Ping Wu

Australian Institute for Innovative Materials - Papers

To explore good anode materials of high safety, high reversible capacity, good cycling, and excellent rate capability, a Li3VO4 microbox with wall thickness of 40 nm was prepared by a one-pot and template-free in situ hydrothermal method. In addition, its composite with graphene nanosheets of about six layers of graphene was achieved. Both of them, especially the Li3VO4/graphene nanosheets composite, show superior electrochemical performance to the formerly reported vanadium-based anode materials. The composite shows a reversible capacity of 223 mAh g−1 even at 20C (1C = 400 mAh g−1). After 500 cycles at 10C there is no evident capacity fading.


Simple Synthesis Of Yolk-Shelled Znco2o4 Microspheres Towards Enhancing The Electrochemical Performance Of Lithium-Ion Batteries In Conjunction With A Sodium Carboxymethyl Cellulose Binder, Jingfa Li, Jiazhao Wang, David Wexler, Dongqi Shi, Jianwen Liang, Hua-Kun Liu, Shenglin Xiong, Yitai Qian Jan 2013

Simple Synthesis Of Yolk-Shelled Znco2o4 Microspheres Towards Enhancing The Electrochemical Performance Of Lithium-Ion Batteries In Conjunction With A Sodium Carboxymethyl Cellulose Binder, Jingfa Li, Jiazhao Wang, David Wexler, Dongqi Shi, Jianwen Liang, Hua-Kun Liu, Shenglin Xiong, Yitai Qian

Australian Institute for Innovative Materials - Papers

Mixed metal oxides have been attracting more and more attention recently because of their advantages and superiorities, which can improve the electrochemical performance of single metal oxides. These advantages include structural stability, good electronic conductivity, and reversible capacity. In this work, uniform yolk-shelled ZnCo2O4 microspheres were synthesized by pyrolysis of ZnCo-glycolate microsphere precursors which were prepared via a simple refluxing route without any precipitant or surfactant. The formation process of the yolk-shelled microsphere structure during the thermal decomposition of ZnCo-glycolate is discussed, which is mainly based on the heterogeneous contraction caused by non-equilibrium heat treatment. The performances of the as-prepared …


An Overview - Functional Nanomaterials For Lithium Rechargeable Batteries, Supercapacitors, Hydrogen Storage, And Fuel Cells, Hua-Kun Liu Jan 2013

An Overview - Functional Nanomaterials For Lithium Rechargeable Batteries, Supercapacitors, Hydrogen Storage, And Fuel Cells, Hua-Kun Liu

Australian Institute for Innovative Materials - Papers

There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithium ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on …


Nanocomposites Of Silicon And Carbon Derived From Coal Tar Pitch: Cheap Anode Materials For Lithium-Ion Batteries With Long Cycle Life And Enhanced Capacity, Yun-Xiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou Jan 2013

Nanocomposites Of Silicon And Carbon Derived From Coal Tar Pitch: Cheap Anode Materials For Lithium-Ion Batteries With Long Cycle Life And Enhanced Capacity, Yun-Xiao Wang, Shulei Chou, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

From energy and environmental consideration, an industrial waste product, coal tar pitch (CTP), is used as the carbon source for Si/AC composite. We exploited a facile sintering method to largely scale up Si/amorphous carbon nanocomposite. The composites with 20 wt.% silicon with PVdF binder exhibited stable lithium storage ability for prolonged cycling. The composite anode delivered a capacity of 400.3 mAh g−1 with a high capacity retention of 71.3% after 1000 cycles. Various methods are used to investigate the reason for the outstanding cyclability. The results indicate that the silicon nanoparticles are wrapped by amorphous SiOx and AC in Si/AC …


A Hybrid Electrolyte Energy Storage Device With High Energy And Long Life Using Lithium Anode And Mno2 Nanoflake Cathode, Shulei Chou, Yun-Xiao Wang, Jiantie Xu, Jia-Zhao Wang, Hua-Kun Liu, S X. Dou Jan 2013

A Hybrid Electrolyte Energy Storage Device With High Energy And Long Life Using Lithium Anode And Mno2 Nanoflake Cathode, Shulei Chou, Yun-Xiao Wang, Jiantie Xu, Jia-Zhao Wang, Hua-Kun Liu, S X. Dou

Australian Institute for Innovative Materials - Papers

A hybrid electrolyte energy storage system combining the features of supercapacitors and lithium batteries has been constructed. It consists of MnO2 nanoflakes in 1 M Li2SO4 aqueous electrolyte as the cathode and lithium foil in ionic liquid (1 M lithium bis(trifluoromethanesulfonyl)imide (LiNTf2) in N-methyl-N-propyl pyrrolidinium bis(trifluoromethanesulfonyl)imide ([C(3)mpyr][NTf2])) electrolyte as the anode, separated by a lithium super ionic conductor glass ceramic film (LiSICON). This system shows the advantages of both a supercapacitor (long cycle life) and a lithium battery (high energy), as well as low cost and improved safety due to the combination of ionic liquid and ceramic solid state electrolyte …


Highly Uniform Tio2/Sno2/Carbon Hybrid Nanofibers With Greatly Enhanced Lithium Storage Performance, Zunxian Yang, Qing Meng, Zaiping Guo, Xuebin Yu, Tailiang Guo, Rong Zeng Jan 2013

Highly Uniform Tio2/Sno2/Carbon Hybrid Nanofibers With Greatly Enhanced Lithium Storage Performance, Zunxian Yang, Qing Meng, Zaiping Guo, Xuebin Yu, Tailiang Guo, Rong Zeng

Australian Institute for Innovative Materials - Papers

Highly uniform, relatively large area TiO2/SnO 2/carbon hybrid nanofibers were synthesized by a simple method based on thermal pyrolysis and oxidation of an as-spun titanium-tin/polyacrylonitrile nanoweb composite in an argon atmosphere. This novel composite features the uniform dispersion and encapsulation of highly uniform nanoscale TiO 2/SnO2 crystals in a porous carbon matrix. The high porosity of the nanofiber composite material, together with the conductive carbon matrix, enhanced the electrochemical performance of the TiO 2/SnO2/carbon nanofiber electrode. The TiO 2/SnO2/carbon nanofiber electrode displays a reversible capacity of 442.8 mA h g-1 for up to 100 cycles, and exhibits excellent rate capability. …


The Effects Of Fec (Fluoroethylene Carbonate) Electrolyte Additive On The Lithium Storage Properties Of Nio (Nickel Oxide) Nanocuboids, Kuok H. Seng, Li Li, Dapeng Chen, Zhixin Chen, Xiaolin Wang, Hua-Kun Liu, Zaiping Guo Jan 2013

The Effects Of Fec (Fluoroethylene Carbonate) Electrolyte Additive On The Lithium Storage Properties Of Nio (Nickel Oxide) Nanocuboids, Kuok H. Seng, Li Li, Dapeng Chen, Zhixin Chen, Xiaolin Wang, Hua-Kun Liu, Zaiping Guo

Australian Institute for Innovative Materials - Papers

Nanocuboid shaped NiO (nickel oxide) has been synthesized using an optical floating zone furnace. It was found that the nanocuboids exhibit single crystalline nature, and have clean and sharp edges. Furthermore, the NiO nanocuboids were tested for their electrochemical performances as anode material for LIBs (lithium-ion batteries) in a coin-type half cell. The effects of FEC (fluoroethylene carbonate) additive on the lithium storage performance were also investigated, which is the first of such studies for transition metal oxides. It was found that FEC has a positive effect on the cycling stability and also improves the rate performances of the nanocuboids. …


Computational Modeling Of Graphene Oxide Exfoliation And Lithium Storage Characteristics, Reza Mortezaee Jan 2013

Computational Modeling Of Graphene Oxide Exfoliation And Lithium Storage Characteristics, Reza Mortezaee

Browse all Theses and Dissertations

Graphene oxide is a two dimensional material obtained by adsorption of oxygen or oxygen-containing groups on graphene. Stacked layers of graphene oxide constitute graphite oxide. These materials have various applications such as a source material for graphene production, transport support for electron microscopy, flexible organic photovoltaic cells and use in Li-ion batteries. Generation of exfoliated graphene oxide from a graphite oxide precursor is achieved relatively easily in solution as compared to graphene exfoliation. In this study we investigate the details of the graphene oxide exfoliation procedure in solution by calculating the Gibb's free energies and reaction rates. We consider two …