Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Sodium Atoms In The Lunar Exotail: Observed Velocity And Spatial Distributions, Michael R. Line, E. J. Mierkiewicz, R. J. Oliversen, J. K. Wilson, L. M. Haffner, F. L. Roesler Jun 2012

Sodium Atoms In The Lunar Exotail: Observed Velocity And Spatial Distributions, Michael R. Line, E. J. Mierkiewicz, R. J. Oliversen, J. K. Wilson, L. M. Haffner, F. L. Roesler

Physical Sciences - Daytona Beach

The lunar sodium tail extends long distances due to radiation pressure on sodium atoms in the lunar exosphere. Our earlier observations measured the average radial velocity of sodium atoms moving down the lunar tail beyond Earth (i.e., near the anti-lunar point) to be ∼12.5. km/s. Here we use the Wisconsin H-alpha Mapper to obtain the first kinematically resolved maps of the intensity and velocity distribution of this emission over a 15° × 15 ° region on the sky near the anti-lunar point. We present both spatially and spectrally resolved observations obtained over four nights bracketing new Moon in October 2007. …


Optimization Of Magnetic Powdered Activated Carbon For Aqueous Hg(Ii) Removal And Magnetic Recovery, Emily K. Faulconer, Natalia Hoogesteijn Von Reitzenstein, David W. Mazyck Jan 2012

Optimization Of Magnetic Powdered Activated Carbon For Aqueous Hg(Ii) Removal And Magnetic Recovery, Emily K. Faulconer, Natalia Hoogesteijn Von Reitzenstein, David W. Mazyck

Physical Sciences - Daytona Beach

Activated carbon is known to adsorb aqueous Hg(II). MPAC (magnetic powdered activated carbon) has the potential to remove aqueous Hg to less than 0.2 mg/L while being magnetically recoverable. Magnetic recapture allows simple sorbent separation from the waste stream while an isolated waste potentially allows for mercury recycling. MPAC Hg-removal performance is verified by mercury mass balance, calculated by quantifying adsorbed, volatilized, and residual aqueous mercury. The batch reactor contained a sealed mercury-carbon contact chamber with mixing and constant N2(g) headspace flow to an oxidizingtrap. Mercury adsorption was performed using spiked ultrapure water (100 mg/L Hg). Mercury concentrations …


Detecting Ionospheric Tec Perturbations Caused By Natural Hazards Using A Global Network Of Gps Receivers: The Tohoku Case Study, A. Komjathy, D. A. Galvan, P. Stephens, M. D. Butala, V. Akopian, B. Wilson, O. Verkhoglyadova, A. J. Mannucci, M. Hickey Jan 2012

Detecting Ionospheric Tec Perturbations Caused By Natural Hazards Using A Global Network Of Gps Receivers: The Tohoku Case Study, A. Komjathy, D. A. Galvan, P. Stephens, M. D. Butala, V. Akopian, B. Wilson, O. Verkhoglyadova, A. J. Mannucci, M. Hickey

Physical Sciences - Daytona Beach

Recent advances in GPS data processing have demonstrated that ground-based GPS receivers are capable of detecting ionospheric TEC perturbations caused by surface-generated Rayleigh, acoustic and gravity waves. There have been a number of publications discussing TEC perturbations immediately following the M 9.0 Tohoku earthquake in Japan on March 11, 2011. Most investigators have focused on the ionospheric responses up to a few hours following the earthquake and tsunami. In our research, in addition to March 11, 2011 we investigate global ionospheric TEC perturbations a day before and after the event. We also compare indices of geomagnetic activity on all three …