Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Light-Bending Tests Of Lorentz Invariance, Quentin G. Bailey, Rhondale Tso Oct 2011

Light-Bending Tests Of Lorentz Invariance, Quentin G. Bailey, Rhondale Tso

Physics & Astronomy - Prescott

Classical light-bending is investigated for weak gravitational fields in the presence of hypothetical local Lorentz violation. Using an effective field theory framework that describes general deviations from local Lorentz invariance, we derive a modified deflection angle for light passing near a massive body. The results include anisotropic effects not present for spherical sources in General Relativity as well as Weak Equivalence Principle violation. We develop an expression for the relative deflection of two distant stars that can be used to analyze data in past and future solar-system observations. The measurement sensitivities of such tests to coefficients for Lorentz violation are …


A Model Of So-Called "Zebra" Emissions In Solar Flare Radio Burst Continua, R. A. Treumann, R. Nakamura, W. Baumjohann Sep 2011

A Model Of So-Called "Zebra" Emissions In Solar Flare Radio Burst Continua, R. A. Treumann, R. Nakamura, W. Baumjohann

Dartmouth Scholarship

A simple mechanism for the generation of elec- tromagnetic “Zebra” pattern emissions is proposed. “Zebra” bursts are regularly spaced narrow-band radio emissions on the otherwise broadband radio continuum emitted by the ac- tive solar corona. The mechanism is based on the generation of an ion-ring distribution in a magnetic mirror geometry in the presence of a properly directed field-aligned electric po- tential field. Such ion-rings or ion-conics are well known from magnetospheric observations. Under coronal condi- tions they may become weakly relativistic. In this case the ion-cyclotron maser generates a number of electromagnetic ion-cyclotron harmonics which modulate the electron maser …


The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown Aug 2011

The Role Of Llnl's Fast Calibration Facility In Diagnosing Nif Fusion Plasmas, Joshua G. Thompson, Carey Scott, Greg V. Brown

STAR Program Research Presentations

The Fusion and Astrophysics (FAST) Calibration and Diagnostic Facility uses the original Electron Beam Ion Trap (EBIT-I) to profile x-ray filters that are used in the Dante Soft X-Ray Diagnostic at the National Ignition Facility (NIF). FAST has an advantage over any other facility not only for its high accuracy, but also for its proximity to NIF in the Lawrence Livermore National Laboratory (LLNL). This makes for highly accurate and near-instantaneous filter calibration turnover.

EBIT-I was first constructed to create, trap, and observe static highly charged ions (HCIs) and conduct experimental astrophysics (creating an x-ray spectroscopy catalogue of ions). To …


Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown Aug 2011

Laboratory Astrophysics: Using Ebit Measurements To Interpret High Resolution Spectra From Celestial Sources, Carey Scott, Joshua Thompson, N. Hell, Greg V. Brown

STAR Program Research Presentations

Astrophysicists use radiation to investigate the physics controlling a variety of celestial sources, including stellar atmospheres, black holes, and binary systems. By measuring the spectrum of the emitted radiation, astrophysicists can determine a source’s temperature and composition. Accurate atomic data are needed for reliably interpreting these spectra. Here we present an overview of how LLNL’s EBIT facility is used to put the atomic data on sound footing for use by the high energy astrophysics community.


Examining Type Ia Supernova Progenitors From Local Event Rates, Schuyler Wolff May 2011

Examining Type Ia Supernova Progenitors From Local Event Rates, Schuyler Wolff

Mahurin Honors College Capstone Experience/Thesis Projects

We present the recalculation of the rates of supernovae in local, low redshift (z ≤ 0.1) from the Nearby Galaxies Supernovae Search Project (Strolger, 2003) using an improved baseline designed to maximize SNe yield. Approximately 15 additional SNe of various types and ages have been discovered from the dataset and added to the 42 SNe already detected. This sample is sufficient to obtain an accurate rate of SNe in the local universe. The rates are weighted by volume, total light, and host galaxy type. Further spectroscopic data for the progenitor galaxies of each event will allow us to compare the …


Dynamics Of Equatorial Spread F Using Ground-Based Optical And Radar Measurements, Narayan P. Chapagain May 2011

Dynamics Of Equatorial Spread F Using Ground-Based Optical And Radar Measurements, Narayan P. Chapagain

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The Earth's equatorial ionosphere most often shows the occurrence of large plasma density and velocity fluctuations with a broad range of scale sizes and amplitudes. These night time ionospheric irregularities in the F-region are commonly referred to as equatorial spread F (ESF) or plasma bubbles (EPBs). This dissertation focuses on analysis of ground-based optical and radar measurements to investigate the development and dynamics of ESF, which can significantly disrupt radio communication and GPS navigation systems. OI (630.0 nm) airglow image data were obtained by the Utah State University all-sky CCD camera, primarily during the equinox period, from three different longitudinal …


Clustering In Highest Energy Cosmic Rays: Physics Or Statistics?, Haim Goldberg, Thomas J. Weiler Feb 2011

Clustering In Highest Energy Cosmic Rays: Physics Or Statistics?, Haim Goldberg, Thomas J. Weiler

Haim Goldberg

Directional clustering can be expected in cosmic ray observations due to purely statistical fluctuations for sources distributed randomly in the sky. We develop an analytic approach to estimate the probability of random cluster configurations, and use these results to study the strong potential of the HiRes, Auger, Telescope Array and EUSO/OWL/AirWatch facilities for deciding whether any observed clustering is most likely due to non-random sources.


A Pot Of Gold At The End Of The Cosmic "Raynbow"?, L. A. Anchordoqui, M. T. Dova, T. P. Mccauley, T. Paul, S. Reucroft, J. D. Swain Jan 2011

A Pot Of Gold At The End Of The Cosmic "Raynbow"?, L. A. Anchordoqui, M. T. Dova, T. P. Mccauley, T. Paul, S. Reucroft, J. D. Swain

John Swain

We critically review the common belief that ultrahigh energy cosmic rays are protons or atomic nuclei with masses not exceeding that of iron. We find that heavier nuclei are indeed possible, and discuss possible sources and acceleration mechanisms for such primaries. We also show detailed simulations of extensive air showers produced by "superheavy" nuclei, and discuss prospects for their detection in future experiments.


Condensation States And Landscaping With The Theory Of Abstraction, Subhajit Kumar Ganguly Jan 2011

Condensation States And Landscaping With The Theory Of Abstraction, Subhajit Kumar Ganguly

Subhajit Kumar Ganguly

The Abstraction theory is applied in landscaping. A collection of objects may be made to be vast or meager depending upon the scale of observations. This idea may be developed to unite the worlds of the great vastness of the universe and the minuteness of the sub-atomic realm. Keeping constant a scaling ratio for both worlds, these may actually be converted into two self-same representatives with respect to scaling. The Laws of Physical Transactions are made use of to study Bose-Einstein condensation. As the packing density of concerned constituents increase to a certain critical value, there may be evolution of …