Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2005

Statistical Theory

Adjusted p-value

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Test Statistics Null Distributions In Multiple Testing: Simulation Studies And Applications To Genomics, Katherine S. Pollard, Merrill D. Birkner, Mark J. Van Der Laan, Sandrine Dudoit Jul 2005

Test Statistics Null Distributions In Multiple Testing: Simulation Studies And Applications To Genomics, Katherine S. Pollard, Merrill D. Birkner, Mark J. Van Der Laan, Sandrine Dudoit

U.C. Berkeley Division of Biostatistics Working Paper Series

Multiple hypothesis testing problems arise frequently in biomedical and genomic research, for instance, when identifying differentially expressed or co-expressed genes in microarray experiments. We have developed generally applicable resampling-based single-step and stepwise multiple testing procedures (MTP) for control of a broad class of Type I error rates, defined as tail probabilities and expected values for arbitrary functions of the numbers of false positives and rejected hypotheses (Dudoit and van der Laan, 2005; Dudoit et al., 2004a,b; Pollard and van der Laan, 2004; van der Laan et al., 2005, 2004a,b). As argued in the early article of Pollard and van der …


Multiple Testing Procedures And Applications To Genomics, Merrill D. Birkner, Katherine S. Pollard, Mark J. Van Der Laan, Sandrine Dudoit Jan 2005

Multiple Testing Procedures And Applications To Genomics, Merrill D. Birkner, Katherine S. Pollard, Mark J. Van Der Laan, Sandrine Dudoit

U.C. Berkeley Division of Biostatistics Working Paper Series

This chapter proposes widely applicable resampling-based single-step and stepwise multiple testing procedures (MTP) for controlling a broad class of Type I error rates, in testing problems involving general data generating distributions (with arbitrary dependence structures among variables), null hypotheses, and test statistics (Dudoit and van der Laan, 2005; Dudoit et al., 2004a,b; van der Laan et al., 2004a,b; Pollard and van der Laan, 2004; Pollard et al., 2005). Procedures are provided to control Type I error rates defined as tail probabilities for arbitrary functions of the numbers of Type I errors, V_n, and rejected hypotheses, R_n. These error rates include: …