Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Physical Sciences and Mathematics

A (Not So) Complex Solution To A² + B² = Cⁿ, Arnold M. Adelberg, Arthur T. Benjamin, David I. Rudel '99 Oct 2004

A (Not So) Complex Solution To A² + B² = Cⁿ, Arnold M. Adelberg, Arthur T. Benjamin, David I. Rudel '99

All HMC Faculty Publications and Research

No abstract provided in this article.


Random Walks On The Torus With Several Generators, Timothy Prescott '02, Francis E. Su Oct 2004

Random Walks On The Torus With Several Generators, Timothy Prescott '02, Francis E. Su

All HMC Faculty Publications and Research

Given n vectors {i} ∈ [0, 1)d, consider a random walk on the d-dimensional torus d = ℝd/ℤd generated by these vectors by successive addition and subtraction. For certain sets of vectors, this walk converges to Haar (uniform) measure on the torus. We show that the discrepancy distance D(Q*k) between the kth step distribution of the walk and Haar measure is bounded below by D(Q*k) ≥ C1k−n/2, where C1 = C(n, d) is …


On The Polarization Of Closed Strings By Ramond-Ramond Fluxes, Vatche Sahakian Oct 2004

On The Polarization Of Closed Strings By Ramond-Ramond Fluxes, Vatche Sahakian

All HMC Faculty Publications and Research

In the Green-Schwarz formalism, the closed string worldsheet of the IIB theory couples to Ramond-Ramond (RR) fluxes through spinor bilinears. We study the effect of such fluxes by analyzing the supersymmetry transformation of the worldsheet in general backgrounds. We show that, in the presence RR fields, the closed string can get `polarized', as the spinors acquire non-zero vevs in directions correlating with the orientation of close-by D-branes. Reversing the argument, this may allow for worldsheet configurations—with non-trivial spinor structure—that source RR moments.


Immunogold Labeling To Enhance Contrast In Optical Coherence Microscopy Of Tissue Engineered Corneal Constructs, Chris B. Raub, Elizabeth J. Orwin, Richard C. Haskell Sep 2004

Immunogold Labeling To Enhance Contrast In Optical Coherence Microscopy Of Tissue Engineered Corneal Constructs, Chris B. Raub, Elizabeth J. Orwin, Richard C. Haskell

All HMC Faculty Publications and Research

Our lab has used an optical coherence microscope (OCM) to assess both the structure of tissue-engineered corneal constructs and their transparency. Currently, we are not able to resolve cells versus collagen matrix material in the images produced. We would like to distinguish cells in order to determine if they are viable while growing in culture and also if they are significantly contributing to the light scattering in the tissue. In order to do this, we are currently investigating the use of immunogold labeling. Gold nanoparticles are high scatterers and can create contrast in images. We have conjugated gold nanoparticles to …


Putnam, Pizza & Problem Solving, Andrew J. Bernoff, Francis E. Su Sep 2004

Putnam, Pizza & Problem Solving, Andrew J. Bernoff, Francis E. Su

All HMC Faculty Publications and Research

Ok, here's a difficult question for you.. How can you get roughly 10% of the student body at your college to get up early on a Saturday and spend six hours working on an incredibly difficult exam for which many will get a score of zero?


Visualizing Early Frog Development With Motion-Sensitive 3-D Optical Coherence Microscopy, Richard C. Haskell, Mary E. Williams, Daniel C. Petersen, Barbara M. Hoeling, Andrew J. Schile, J. D. Pennington, M. G. Seetin, J. M. Castelaz, Scott E. Fraser, Cyrus Papan, Hongwu Ren, Johannes F. De Boer, Zhongping Chen Sep 2004

Visualizing Early Frog Development With Motion-Sensitive 3-D Optical Coherence Microscopy, Richard C. Haskell, Mary E. Williams, Daniel C. Petersen, Barbara M. Hoeling, Andrew J. Schile, J. D. Pennington, M. G. Seetin, J. M. Castelaz, Scott E. Fraser, Cyrus Papan, Hongwu Ren, Johannes F. De Boer, Zhongping Chen

All HMC Faculty Publications and Research

A motion-sensitive en-face-scanning 3-D optical coherence microscope (OCM) has been designed and constructed to study critical events in the early development of plants and animals. We describe the OCM instrument and present time-lapse movies of frog gastrulation, an early developmental event in which three distinct tissue layers are established that later give rise to all major organ systems. OCM images constructed with fringe-amplitude data show the mesendoderm migrating up along the blastocoel roof, thus forming the inner two tissue layers. Motion-sigma data, measuring the random motion of scatterers, is used to construct complementary images that indicate the presence of Brownian …


Femtosecond Spectrotemporal Magneto-Optics, J.-Y. Bigot, L. Guidoni, E. Beaurepaire, Peter N. Saeta Aug 2004

Femtosecond Spectrotemporal Magneto-Optics, J.-Y. Bigot, L. Guidoni, E. Beaurepaire, Peter N. Saeta

All HMC Faculty Publications and Research

A new method to measure and analyze the time and spectrally resolved polarimetric response of magnetic materials is presented. It allows us to study the ultrafast magnetization dynamics of a CoPt3 ferromagnetic film. The analysis of the pump-induced rotation and ellipticity detected by a broad spectrum probe beam shows that magneto-optical signals predominantly reflect the spin dynamics in ferromagnets.


A Liouville-Gelfand Equation For K-Hessian Operators, Jon T. Jacobsen Jul 2004

A Liouville-Gelfand Equation For K-Hessian Operators, Jon T. Jacobsen

All HMC Faculty Publications and Research

In this paper we establish existence and multiplicity results for a class of fully nonlinear elliptic equations of k-Hessian type with exponential nonlinearity. In particular, we characterize the precise dependence of the multiplicity of solutions with respect to both the space dimension and the value of k. The choice of exponential nonlinearity is motivated by the classical Liouville-Gelfand problem from combustible gas dynamics and prescribed curvature problems.


An Experimental Study Of Micron-Scale Droplet Aerosols Produced Via Ultrasonic Atomization, Thomas D. Donnelly, J. Hogan '03, A. Mugler '04, N. Schommer '04, M. Schubmehl '02, Andrew J. Bernoff, B. Forrest '02 Jun 2004

An Experimental Study Of Micron-Scale Droplet Aerosols Produced Via Ultrasonic Atomization, Thomas D. Donnelly, J. Hogan '03, A. Mugler '04, N. Schommer '04, M. Schubmehl '02, Andrew J. Bernoff, B. Forrest '02

All HMC Faculty Publications and Research

In the last 10 years, laser-driven fusion experiments performed on atomic clusters of deuterium have shown a surprisingly high neutron yield per joule of input laser energy. Results indicate that the optimal cluster size for maximizing fusion events should be in the 0.01–μm diameter range, but an appropriate source of droplets of this size does not exist. In an attempt to meet this need, we use ultrasonic atomization to generate micron-scale droplet aerosols of high average density, and we have developed and refined a reliable droplet sizing technique based on Mie scattering. Harmonic excitation of the fluid in …


Closed Strings In Ramond-Ramond Backgrounds, Vatche Sahakian Apr 2004

Closed Strings In Ramond-Ramond Backgrounds, Vatche Sahakian

All HMC Faculty Publications and Research

We write the IIB Green-Schwarz action in certain general classes of curved backgrounds threaded with Ramond-Ramond fluxes. The fixing of the kappa symmetry in the light-cone gauge and the use of supergravity Bianchi identities simplify the task. We find an expression that truncates to quartic order in the spacetime spinors and relays interesting information about the vacuum structure of the worldsheet theory. The results are particularly useful in exploring integrable string dynamics in the context of the holographic duality.


Double Excitations Within Time-Dependent Density Functional Theory Linear Response, Neepa T. Maitra, Fan Zhang, Robert J. Cave, Kieron Burke Apr 2004

Double Excitations Within Time-Dependent Density Functional Theory Linear Response, Neepa T. Maitra, Fan Zhang, Robert J. Cave, Kieron Burke

All HMC Faculty Publications and Research

Within the adiabatic approximation, time-dependent density functional theory yields only single excitations. Near states of double excitation character, the exact exchange–correlation kernel has a strong dependence on frequency. We derive the exact frequency-dependent kernel when a double excitation mixes with a single excitation, well separated from the other excitations, in the limit that the electron–electron interaction is weak. Building on this, we construct a nonempirical approximation for the general case, and illustrate our results on a simple model.


Magical Miscellany, Francis Su Feb 2004

Magical Miscellany, Francis Su

All HMC Faculty Publications and Research

What is a Math Fun Fact, you ask? A Math Fun Fact is any mathematical tidbit that can be presented or grasped quickly, is surprising or captivating, can be generally enjoyed by friends of mathematics, and is hopefully fun! Of course, part of the fun is thinking about why the Fun Fact is true--so we won't spoil the fun. Though, we may give you some hints and references

However, since there are infinitely many Math Fun Facts (prove this), we can only bring you a few each time... here are a few whose conclusions might be considered "magical".


Limits To Performance Improvement Provided By Balanced Interferometers And Balanced Detection In Oct/Ocm Instruments, David Liao, Adam E. Pivonka, Brendan R. Haberle, Daniel C. Petersen, Barbara M. Hoeling, Richard C. Haskell Jan 2004

Limits To Performance Improvement Provided By Balanced Interferometers And Balanced Detection In Oct/Ocm Instruments, David Liao, Adam E. Pivonka, Brendan R. Haberle, Daniel C. Petersen, Barbara M. Hoeling, Richard C. Haskell

All HMC Faculty Publications and Research

We compare the dynamic range of OCT/OCM instruments configured with unbalanced interferometers, e.g., Michelson interferometers, with that of instruments utilizing balanced interferometers and balanced photodetection. We define the dynamic range (DR) as the ratio of the maximum fringe amplitude achieved with a highly reflecting surface to the root-mean-square (rms) noise. Balanced systems achieve a dynamic range 2.5 times higher than that of a Michelson interferometer, enabling an image acquisition speed roughly 6 times faster. This maximum improvement occurs at light source powers of a few milliwatts. At light source powers higher than 30 mW, the advantage in acquisition speed of …


Radon Transforms And The Finite General Linear Groups, Michael E. Orrison Jan 2004

Radon Transforms And The Finite General Linear Groups, Michael E. Orrison

All HMC Faculty Publications and Research

Using a class sum and a collection of related Radon transforms, we present a proof G. James’s Kernel Intersection Theorem for the complex unipotent representations of the finite general linear groups. The approachis analogous to that used by F. Scarabotti for a proof of James’s Kernel Intersection Theorem for the symmetric group. In the process, we also show that a single class sum may be used to distinguish between distinct irreducible unipotent representations.


Random Walks With Badly Approximable Numbers, Doug Hensley, Francis Su Jan 2004

Random Walks With Badly Approximable Numbers, Doug Hensley, Francis Su

All HMC Faculty Publications and Research

Using the discrepancy metric, we analyze the rate of convergence of a random walk on the circle generated by d rotations, and establish sharp rates that show that badly approximable d-tuples in Rd give rise to walks with the fastest convergence.


Mathematical Magic, Arthur T. Benjamin Jan 2004

Mathematical Magic, Arthur T. Benjamin

All HMC Faculty Publications and Research

In this paper, we present simple strategies for performing mathematical calculations that appear magical to most audiences. Specifically, we explain how to square large numbers, memorize pi to 100 places and determine the day of the week of any given date.


Blowup And Dissipation In A Critical-Case Unstable Thin Film Equation, Thomas P. Witelski, Andrew J. Bernoff, Andrea L. Bertozzi Jan 2004

Blowup And Dissipation In A Critical-Case Unstable Thin Film Equation, Thomas P. Witelski, Andrew J. Bernoff, Andrea L. Bertozzi

All HMC Faculty Publications and Research

We study the dynamics of dissipation and blow-up in a critical-case unstable thin film equation. The governing equation is a nonlinear fourth-order degenerate parabolic PDE derived from a generalized model for lubrication flows of thin viscous fluid layers on solid surfaces. There is a critical mass for blow-up and a rich set of dynamics including families of similarity solutions for finite-time blow-up and infinite-time spreading. The structure and stability of the steady-states and the compactly-supported similarity solutions is studied.


Semilinear Equations With Discrete Spectrum, Alfonso Castro Jan 2004

Semilinear Equations With Discrete Spectrum, Alfonso Castro

All HMC Faculty Publications and Research

This is an overview of the solvability of semilinear equations where the linear part has discrete spectrum. Semilinear elliptic and hyperbolic equations, as well as Hammerstein integral equations, are used as motivating examples. The presentation is intended to be accessible to non experts.


An Existence Result For A Class Of Sublinear Semipositone Systems, Alfonso Castro, C. Maya, Ratnasingham Shivaji Jan 2004

An Existence Result For A Class Of Sublinear Semipositone Systems, Alfonso Castro, C. Maya, Ratnasingham Shivaji

All HMC Faculty Publications and Research

We consider the existence of positive solutions for the system

-Δui = λ[fi(u1,u2,...,um) - hi]; Ω

ui = 0; ∂Ω

where λ > 0 is a parameter, Δ is the Laplacian operator, Ω is a bounded domain in Rn; n ≥ 1 with a smooth boundary ∂Ω, fi are C1 functions satisfying f1(0,0,...,0) = 0, lim z→∞ fi(z,z,...,z) = ∞ and lim z→∞ fi(z,z,...,z)/z = 0, and hi are nonnegative continuous functions in Ω for i = 1,2,...,m. …


Examples Of Cayley 4-Manifolds, Weiqing Gu, Christopher Pries '03 Jan 2004

Examples Of Cayley 4-Manifolds, Weiqing Gu, Christopher Pries '03

All HMC Faculty Publications and Research

We determine several families of so-called Cayley 4-dimensional manifolds in the real Euclidean 8-space. Such manifolds are of interest because Cayley 4-manifolds are supersymmetric cycles that are candidates for representations of fundamental particles in String Theory. Moreover, some of the examples of Cayley manifolds discovered in this paper may be modified to construct explicit examples in our current search for new holomorphic invariants for Calabi-Yau 4-folds and for the further development of mirror symmetry.

We apply the classic results of Harvey and Lawson to find Cayley manifolds which are graphs of functions from the set of quaternions to itself. We …


Essential P-Spaces: A Generalization Of Door Spaces, Emad Abu Osba, Melvin Henriksen Jan 2004

Essential P-Spaces: A Generalization Of Door Spaces, Emad Abu Osba, Melvin Henriksen

All HMC Faculty Publications and Research

An element f of a commutative ring A with identity element is called a von Neumann regular element if there is a g in A such that f2g=f. A point p of a (Tychonoff) space X is called a P-point if each f in the ring C(X) of continuous real-valued functions is constant on a neighborhood of p. It is well-known that the ring C(X) is von Neumann regular ring iff each of its elements is a von Neumann regular element; in which case X is called a P-space. If all but at most one point of X …