Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

2003

Statistics and Probability

U.C. Berkeley Division of Biostatistics Working Paper Series

Prediction

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Loss-Based Estimation With Cross-Validation: Applications To Microarray Data Analysis And Motif Finding, Sandrine Dudoit, Mark J. Van Der Laan, Sunduz Keles, Annette M. Molinaro, Sandra E. Sinisi, Siew Leng Teng Dec 2003

Loss-Based Estimation With Cross-Validation: Applications To Microarray Data Analysis And Motif Finding, Sandrine Dudoit, Mark J. Van Der Laan, Sunduz Keles, Annette M. Molinaro, Sandra E. Sinisi, Siew Leng Teng

U.C. Berkeley Division of Biostatistics Working Paper Series

Current statistical inference problems in genomic data analysis involve parameter estimation for high-dimensional multivariate distributions, with typically unknown and intricate correlation patterns among variables. Addressing these inference questions satisfactorily requires: (i) an intensive and thorough search of the parameter space to generate good candidate estimators, (ii) an approach for selecting an optimal estimator among these candidates, and (iii) a method for reliably assessing the performance of the resulting estimator. We propose a unified loss-based methodology for estimator construction, selection, and performance assessment with cross-validation. In this approach, the parameter of interest is defined as the risk minimizer for a suitable …


Unified Cross-Validation Methodology For Selection Among Estimators And A General Cross-Validated Adaptive Epsilon-Net Estimator: Finite Sample Oracle Inequalities And Examples, Mark J. Van Der Laan, Sandrine Dudoit Nov 2003

Unified Cross-Validation Methodology For Selection Among Estimators And A General Cross-Validated Adaptive Epsilon-Net Estimator: Finite Sample Oracle Inequalities And Examples, Mark J. Van Der Laan, Sandrine Dudoit

U.C. Berkeley Division of Biostatistics Working Paper Series

In Part I of this article we propose a general cross-validation criterian for selecting among a collection of estimators of a particular parameter of interest based on n i.i.d. observations. It is assumed that the parameter of interest minimizes the expectation (w.r.t. to the distribution of the observed data structure) of a particular loss function of a candidate parameter value and the observed data structure, possibly indexed by a nuisance parameter. The proposed cross-validation criterian is defined as the empirical mean over the validation sample of the loss function at the parameter estimate based on the training sample, averaged over …


Tree-Based Multivariate Regression And Density Estimation With Right-Censored Data , Annette M. Molinaro, Sandrine Dudoit, Mark J. Van Der Laan Sep 2003

Tree-Based Multivariate Regression And Density Estimation With Right-Censored Data , Annette M. Molinaro, Sandrine Dudoit, Mark J. Van Der Laan

U.C. Berkeley Division of Biostatistics Working Paper Series

We propose a unified strategy for estimator construction, selection, and performance assessment in the presence of censoring. This approach is entirely driven by the choice of a loss function for the full (uncensored) data structure and can be stated in terms of the following three main steps. (1) Define the parameter of interest as the minimizer of the expected loss, or risk, for a full data loss function chosen to represent the desired measure of performance. Map the full data loss function into an observed (censored) data loss function having the same expected value and leading to an efficient estimator …


Asymptotics Of Cross-Validated Risk Estimation In Estimator Selection And Performance Assessment, Sandrine Dudoit, Mark J. Van Der Laan Feb 2003

Asymptotics Of Cross-Validated Risk Estimation In Estimator Selection And Performance Assessment, Sandrine Dudoit, Mark J. Van Der Laan

U.C. Berkeley Division of Biostatistics Working Paper Series

Risk estimation is an important statistical question for the purposes of selecting a good estimator (i.e., model selection) and assessing its performance (i.e., estimating generalization error). This article introduces a general framework for cross-validation and derives distributional properties of cross-validated risk estimators in the context of estimator selection and performance assessment. Arbitrary classes of estimators are considered, including density estimators and predictors for both continuous and polychotomous outcomes. Results are provided for general full data loss functions (e.g., absolute and squared error, indicator, negative log density). A broad definition of cross-validation is used in order to cover leave-one-out cross-validation, V-fold …