Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Neutral Dissociation Of Hydrogen Following Photoexcitation Of Hcl At The Chlorine K Edge, D. L. Hansen, J. Cotter, G. R. Fisher, K. T. Leung, R. Martin, Paul Neill, Rupert C. Perera, I. A. Sellin, Marc Simon, Y. Uehara, B. Vanderford, S. B. Whitfield Apr 1998

Neutral Dissociation Of Hydrogen Following Photoexcitation Of Hcl At The Chlorine K Edge, D. L. Hansen, J. Cotter, G. R. Fisher, K. T. Leung, R. Martin, Paul Neill, Rupert C. Perera, I. A. Sellin, Marc Simon, Y. Uehara, B. Vanderford, S. B. Whitfield

Chemistry and Biochemistry Faculty Research

Time-of-flight mass spectroscopy was used to study the relaxation dynamics of HCl following photoexcitation in the vicinity of the Cl K edge (~2.8 keV) using monochromatic synchrotron radiation. At the lowest resonant excitation to the 6ơ* antibonding orbital, almost half of the excited molecules decay by emission of a neutral H atom, mostly in coincidence with a highly charged Cln1 ion. The present work demonstrates that neutral-atom emission can be a significant decay channel for excited states with very short lifetimes (1 fs). [S1050-2947(98)03604-X]


Continuous Monitoring Of Star's Main Time Projection Chamber, Wilfred J. Braithwaite, Edwin S. Braithwaite Jan 1998

Continuous Monitoring Of Star's Main Time Projection Chamber, Wilfred J. Braithwaite, Edwin S. Braithwaite

Journal of the Arkansas Academy of Science

STAR refers to the Solenoidal Tracking instrument At RHIC (the Relativistic Heavy Ion Collider). For momenta above 500 MeV/c charged kaons are not separated from pions within STAR's Main TPC (Time Projection Chamber) by track density alone and they are poorly separated below 500 MeV/c, even when using information from other sources like the vertex tracker. Within the TPC large numbers of kaons and pions decay into muons (and undetected neutrinos). Earlier work has shown parent pions and kaons whose decays are detected within a TPC may be distinguished uniquely from each other in a two-dimensional plot of muon-emission angle …


Factorization And Effective Action For High-Energy Scattering In Qcd, Ian Balitsky Jan 1998

Factorization And Effective Action For High-Energy Scattering In Qcd, Ian Balitsky

Physics Faculty Publications

The author demonstrates that the amplitude of the high-energy scattering can be factorized in a convolution of the contributions due to fast and slow fields. The fast and slow fields interact by means of Wilson-line operators -- infinite gauge factors ordered along the straight line. The resulting factorization formula gives a starting point for a new approach to the effective action for high-energy scattering.