Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Universal Wormhole Routing, Ronald I. Greenberg, Hyeong-Cheol Oh Dec 1993

Universal Wormhole Routing, Ronald I. Greenberg, Hyeong-Cheol Oh

Computer Science: Faculty Publications and Other Works

We examine the wormhole routing problem in terms of the "congestion" c and "dilation" d for a set of packet paths. We show, with mild restrictions, that there is a simple randomized algorithm for routing any set of P packets in O(cdη + cLηlog P) time, where L is the number of flits in a packet, and η = min {d,L]; only a constant number of flits are stored in each queue at any time. Using this result, we show that a fat-tree network of area Θ(A) can simulate wormhole routing on any network of comparable area with O(log 3 …


Parallel Algorithms For Single-Layer Channel Routing, Ronald I. Greenberg, Shih-Chuan Hung, Jau-Der Shih Dec 1993

Parallel Algorithms For Single-Layer Channel Routing, Ronald I. Greenberg, Shih-Chuan Hung, Jau-Der Shih

Computer Science: Faculty Publications and Other Works

We provide efficient parallel algorithms for the minimum separation, offset range, and optimal offset problems for single-layer channel routing. We consider all the variations of these problems that have linear-time sequential solutions rather than limiting attention to the ``river-routing'' context, where single-sided connections are disallowed. For the minimum separation problem, we obtain O(lgN) time on a CREW PRAM or O(lgN/lglgN) time on a CRCW PRAM, both with optimal work (processor-time product) of O(N), where N is the number of terminals. For the offset range problem, we obtain the same time and processor bounds as long as only one side of …


Feasible Offset And Optimal Offset For Single-Layer Channel Routing, Ronald I. Greenberg, Jau-Der Shih Jun 1993

Feasible Offset And Optimal Offset For Single-Layer Channel Routing, Ronald I. Greenberg, Jau-Der Shih

Computer Science: Faculty Publications and Other Works

The paper provides an efficient method to find all feasible offsets for a given separation in a VLSI channel routing problem in one layer. The prior literature considers this task only for problems with no single-sided nets. When single-sided nets are included, the worst-case solution time increases from Theta(n) to Omega(n^2), where n is the number of nets. But, if the number of columns c is O(n), one can solve the problem in time O(n^{1.5}lg n ), which improves upon a `naive' O(cn) approach. As a corollary of this result, the same time bound suffices to find the optimal offset …


A Systolic Simulation And Transformation System, Ronald I. Greenberg, H.-C. Oh Mar 1993

A Systolic Simulation And Transformation System, Ronald I. Greenberg, H.-C. Oh

Computer Science: Faculty Publications and Other Works

This paper presents a CAD tool, SystSim, to ease the design of systolic systems. Given a high-level, functional description of processors, and a high-level description of their interconnection, SystSim will perform simulations and provide graphical output. SystSim will also perform transformations such as retiming, which eases use of the methodology of Leiserson and Saxe of designing a system with broadcasting and then obtaining a systolic system through retiming.


Minimizing Channel Density With Movable Terminals, Ronald I. Greenberg, Jau-Der Shih Mar 1993

Minimizing Channel Density With Movable Terminals, Ronald I. Greenberg, Jau-Der Shih

Computer Science: Faculty Publications and Other Works

We give algorithms to minimize density for channels with terminals that are movable subject to certain constraints. The main cases considered are channels with linear order constraints, channels with linear order constraints and separation constraints, channels with movable modules containing fixed terminals, and channels with movable modules and terminals. In each case, previous results for running time and space are improved by a factor of L/lg n and L , respectively, where L is the channel length and n is the number of terminals.