Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Spectroscopy

Open Access Dissertations

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Ultraviolet And Infrared Spectroscopy Of Synthetic Foldamers, Aib Homopeptides, And Solvated 1,2-Diphenylethane In The Gas Phase, Joseph R. Gord Aug 2016

Ultraviolet And Infrared Spectroscopy Of Synthetic Foldamers, Aib Homopeptides, And Solvated 1,2-Diphenylethane In The Gas Phase, Joseph R. Gord

Open Access Dissertations

The work presented here implements a supersonic jet expansion source to funnel the population of model peptides and solvated-bichromophore clusters into their low lying structural minima and to collisionally cool these minima to their respective zero-point vibrational levels. Single-conformation ultraviolet and infrared spectroscopy techniques are then used to probe these systems and investigate their electronic properties and uncover their intrinsic conformational preferences in the gas phase.

Model β/γ-peptides known as synthetic foldamers and aminoisobutyric acid (Aib) homopeptides incorporate structural constraints that are designed/known to impose particular structural motifs. Here the ability of a β/γ-dipeptide to replicate the backbone length of …


Single-Conformation Spectroscopy Of Hydrogen Bonding Networks: Solvation, Synthetic Foldamers, And Neurodegenerative Diseases, Patrick S. Walsh Aug 2016

Single-Conformation Spectroscopy Of Hydrogen Bonding Networks: Solvation, Synthetic Foldamers, And Neurodegenerative Diseases, Patrick S. Walsh

Open Access Dissertations

The hydrogen bond is one of the most important interactions in natural processes ranging from protein folding to chemical reactions. Two complementary methodologies are applied to understanding this important interaction: top-down and bottom-up. Top-down methods use large molecules, such as proteins, revealing secondary structure information. Bottom-up experiments are performed on small molecules, utilizing high-resolution spectroscopy to reveal underlying quantum mechanical effects. The complexity gap is formed between these two experimental regimes; between large and small molecules; between bulk and individual solvent molecules; between classical mechanics calculations and quantum chemical calculations. This dissertation will focus on the application of gas phase, …


Thermal Neutron Analysis For Improvised Explosive Device Detection, Matthew David Marziale Mar 2016

Thermal Neutron Analysis For Improvised Explosive Device Detection, Matthew David Marziale

Open Access Dissertations

In this dissertation, the design of a system to detect improvised explosive devices is considered. The technique utilized is thermal neutron analysis. In this method, thermal neutrons are used to interrogate a volume for the presence of nitrogen, which is used as an indicator of explosive, given its unusual high energy line in the gamma ray spectrum generated by thermal capture reactions on explosive material. The performance of the system is then considered for a number of devices used to represent an improvised explosive device, including a 155 mm shell, an antitank mine, and a air to surface bomb. The …


Time Resolved Single Molecule Spectroscopy Of Semiconductor Quantum Dot/Conjugated Organic Hybrid Nanostructures, Michael Yemoh Odoi Sep 2010

Time Resolved Single Molecule Spectroscopy Of Semiconductor Quantum Dot/Conjugated Organic Hybrid Nanostructures, Michael Yemoh Odoi

Open Access Dissertations

Single molecule studies on CdSe quantum dots functionalized with oligo-phenylene vinylene ligands (CdSe-OPV) provide evidence of strong electronic communication that facilitate charge and energy transport between the OPV ligands and the CdSe quantum dot core. This electronic interaction greatly modify, the photoluminescence properties of both bulk and single CdSe-OPV nanostructure thin film samples. Size-correlated wide-field fluorescence imaging show that blinking suppression in single CdSe-OPV is linked to the degree of OPV coverage (inferred from AFM height scans) on the quantum dot surface. The effect of the complex electronic environment presented by photoexcited OPV ligands on the excited state property of …