Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Optimal control

Discipline
Institution
Publication Year
Publication

Articles 1 - 25 of 25

Full-Text Articles in Physical Sciences and Mathematics

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann Oct 2023

Rigid Body Constrained Motion Optimization And Control On Lie Groups And Their Tangent Bundles, Brennan S. Mccann

Doctoral Dissertations and Master's Theses

Rigid body motion requires formulations where rotational and translational motion are accounted for appropriately. Two Lie groups, the special orthogonal group SO(3) and the space of quaternions H, are commonly used to represent attitude. When considering rigid body pose, that is spacecraft position and attitude, the special Euclidean group SE(3) and the space of dual quaternions DH are frequently utilized. All these groups are Lie groups and Riemannian manifolds, and these identifications have profound implications for dynamics and controls. The trajectory optimization and optimal control problem on Riemannian manifolds presents significant opportunities for theoretical development. Riemannian optimization is an attractive …


Low-Reynolds-Number Locomotion Via Reinforcement Learning, Yuexin Liu Aug 2022

Low-Reynolds-Number Locomotion Via Reinforcement Learning, Yuexin Liu

Dissertations

This dissertation summarizes computational results from applying reinforcement learning and deep neural network to the designs of artificial microswimmers in the inertialess regime, where the viscous dissipation in the surrounding fluid environment dominates and the swimmer’s inertia is completely negligible. In particular, works in this dissertation consist of four interrelated studies of the design of microswimmers for different tasks: (1) a one-dimensional microswimmer in free-space that moves towards the target via translation, (2) a one-dimensional microswimmer in a periodic domain that rotates to reach the target, (3) a two-dimensional microswimmer that switches gaits to navigate to the designated targets in …


Artificial Intelligence, Controls, And Sensor Fusion For Optimization And Modeling Of Space Missions And Particle Accelerators, Reza Pirayeshshirazinezhad May 2022

Artificial Intelligence, Controls, And Sensor Fusion For Optimization And Modeling Of Space Missions And Particle Accelerators, Reza Pirayeshshirazinezhad

Mechanical Engineering ETDs

This PhD dissertation is devoted to developing artificial intelligence (AI) applications for space missions and particle accelerators considering constraints on the computational resources. The space mission studied in this research, the Virtual Telescope for X-ray Observations (VTXO), is the mission exploiting 2 6U-CubeSats operating in a precision formation. The goal of the VTXO project is to develop a space-based, X-ray imaging telescope with high angular resolution precision. VTXO space mission is designed and the mission is optimized to increase the performance of the mission. Trajectory optimization with AI, hybrid control, control algorithms, and high performance computing are all used to …


Control And Calibration Strategies For Quantum Simulation, Paul M. Kairys May 2022

Control And Calibration Strategies For Quantum Simulation, Paul M. Kairys

Doctoral Dissertations

The modeling and prediction of quantum mechanical phenomena is key to the continued development of chemical, material, and information sciences. However, classical computers are fundamentally limited in their ability to model most quantum effects. An alternative route is through quantum simulation, where a programmable quantum device is used to emulate the phenomena of an otherwise distinct physical system. Unfortunately, there are a number of challenges preventing the widespread application of quantum simulation arising from the imperfect construction and operation of quantum simulators. Mitigating or eliminating deleterious effects is critical for using quantum simulation for scientific discovery. This dissertation develops strategies …


A Novel Mathematical Model Of The Trojan Y-Chromosome Strategy With Optimal Control, Christopher Turner May 2020

A Novel Mathematical Model Of The Trojan Y-Chromosome Strategy With Optimal Control, Christopher Turner

Electronic Theses and Dissertations

Invasive species are a prevalent problem all over the world. Controlling and eradicating an invasive species is an even more diffcult problem. The Trojan Y Chromosome (TYC) eradication strategy is one control method. This method alters the female to male sex ratio by introducing sex reversed males called supermales. These sex reversed males can only produce male progeny. Mathematical models of this strategy have shown that a population can be driven to extinction with a continuous supply of these sex reversed males. There are many different mathematical models of this strategy, but most have serious flaws, such as negative solutions …


Optimal Sampling Paths For Autonomous Vehicles In Uncertain Ocean Flows, Andrew J. De Stefan Aug 2019

Optimal Sampling Paths For Autonomous Vehicles In Uncertain Ocean Flows, Andrew J. De Stefan

Dissertations

Despite an extensive history of oceanic observation, researchers have only begun to build a complete picture of oceanic currents. Sparsity of instrumentation has created the need to maximize the information extracted from every source of data in building this picture. Within the last few decades, autonomous vehicles, or AVs, have been employed as tools to aid in this research initiative. Unmanned and self-propelled, AVs are capable of spending weeks, if not months, exploring and monitoring the oceans. However, the quality of data acquired by these vehicles is highly dependent on the paths along which they collect their observational data. The …


Numerical Simulations For Optimal Control Of A Cancer Cell Model With Delay, Jessica S. Lugo Jan 2019

Numerical Simulations For Optimal Control Of A Cancer Cell Model With Delay, Jessica S. Lugo

Murray State Theses and Dissertations

Mathematical models are often created to analyze the complicated behavior of many physical systems. One such system is that of the interaction between cancer cells, the immune system, and various treatments such as chemotherapy, radiation, and immunotherapy. Using models that depict these relationships gives researchers insight on the dynamics of this complicated system and possibly ideas for improved treatment schedules.

The model presented here gives the relationship of cancer cells in development phases with immune cells and cycle-specific chemotherapy treatment. This model includes a constant delay term in the mitotic phase. Optimal control theory is used to minimize the cost …


Optimization And Control Of Arrays Of Wave Energy Converters, Jianyang Lyu Jan 2019

Optimization And Control Of Arrays Of Wave Energy Converters, Jianyang Lyu

Dissertations, Master's Theses and Master's Reports

Wave Energy Converter Array is a practical approach to harvest ocean wave energy. To leverage the potential of the WEC array in terms of energy extraction, it is essential to have a properly designed array configuration and control system. This thesis explores the optimal configuration of Wave Energy Converters (WECs) arrays and their optimal control. The optimization of the WEC array allows both dimensions of individual WECs as well as the array layout to varying. In the first optimization problem, cylindrical buoys are assumed in the array where their radii and drafts are optimization parameters. Genetic Algorithms are used for …


Using A Coupled Bio-Economic Model To Find The Optimal Phosphorus Load In Lake Tainter, Wi, Mackenzie Jones Jan 2018

Using A Coupled Bio-Economic Model To Find The Optimal Phosphorus Load In Lake Tainter, Wi, Mackenzie Jones

Williams Honors College, Honors Research Projects

In Dunn County, Wisconsin the lakes suffer from algae blooms due to excess phosphorus runoff. A coupled bio-economic model is studied with the intent of finding the optimal level of phosphorus that should be allowed into the lake depending on certain biologic and economic parameters. We model the algae and phosphorus concentration in the lake over time based off the phosphorus input. Community welfare is modeled by comparing the costs and benefits of phosphorus fertilizer. This model is proposed to find the phosphorus level that maximizes community welfare and then determine how certain environmental and social change initiatives will affect …


Assessing The Economic Tradeoffs Between Prevention And Suppression Of Forest Fires, Elizabeth Trulia Heines Aug 2017

Assessing The Economic Tradeoffs Between Prevention And Suppression Of Forest Fires, Elizabeth Trulia Heines

Doctoral Dissertations

The number of large-scale, high-severity forest fires occurring in the United States is increasing, as is the cost to suppress these fires. These trends have prompted investigations into alternative fuels methods to help prevent these large wildfires. One of the key challenges in studying the costs and benefits of forest fire prevention management is the incorporation of risk and uncertainty surrounding management decisions. We use a technique developed by William Reed to incorporate the stochasticity of the time of a forest fire into our optimal control problems. The goal of these problems is to determine the optimal fire prevention management …


Optimal Control And Its Application To The Life-Cycle Savings Problem, Tracy A. Taylor Jan 2016

Optimal Control And Its Application To The Life-Cycle Savings Problem, Tracy A. Taylor

Theses and Dissertations

Throughout the course of this thesis, we give an introduction to optimal control theory and its necessary conditions, prove Pontryagin's Maximum Principle, and present the life-cycle saving under uncertain lifetime optimal control problem. We present a very involved sensitivity analysis that determines how a change in the initial wealth, discount factor, or relative risk aversion coefficient may affect the model the terminal depletion of wealth time, optimal consumption path, and optimal accumulation of wealth path. Through simulation of the life-cycle saving under uncertain lifetime model, we are not only able to present the model dynamics through time, but also to …


Investigating Advection Control In Competitive Pde Systems And Environmental Transmission In Johne's Disease Ode Models, Kokum Rekha De Silva Dec 2015

Investigating Advection Control In Competitive Pde Systems And Environmental Transmission In Johne's Disease Ode Models, Kokum Rekha De Silva

Doctoral Dissertations

We extend the work on optimal control of advective direction in a reaction-diffusion population model to a system representing two competing populations. We investigate the choice of movement direction to benefit a population. First, the advective direction in one of the populations in a competition model is the control. Next, we extend the work by taking the advective directions of both populations as controls. In both these cases the objective is to maximize a weighted combination of the two populations while minimizing the cost involved in the species movement. Mathematical analysis is completed to derive the optimality system and numerical …


With Vibrationally Excited Thiophosgene Molecule And Double-Well Ion Traps, Dmytro Shyshlov Oct 2015

With Vibrationally Excited Thiophosgene Molecule And Double-Well Ion Traps, Dmytro Shyshlov

Dissertations (1934 -)

For practical realization of quantum information processing we need a quantum system that provides reliable preparation of the initial state, high-fidelity quantum gate operations, error tolerance, readout of the result of quantum computation and scalability of the system to increase the number of qubits. In this dissertation we show how these requirements can be addressed for molecular quantum computer. For computational study of quantum information processing with molecules we employ thiophosgene (SCCl2) molecule that has been used as a test system for quantum control experiments [Mol. Phys. 105, 1999 (2007)]. We investigate the gateway scheme of control in which transitions …


Population Modeling For Resource Allocation And Antimicrobial Stewardship, Jason Bintz Aug 2015

Population Modeling For Resource Allocation And Antimicrobial Stewardship, Jason Bintz

Doctoral Dissertations

This dissertation contains two types of population models with applications in conservation biology and epidemiology. In particular, it considers models for resource allocation and antimicrobial stewardship.

In a population model with a parabolic differential equation and density dependent growth, we study the problem of allocating resources to maximize the net benefit in the conservation of a single species while the cost of the resource allocation is minimized. The net benefit is measured in terms of maximizing population abundance and the goal of maximizing abundance is divided between the goal of maximizing the overall abundance across space and time and the …


Mathematical Modeling And Optimal Control Of Alternative Pest Management For Alfalfa Agroecosystems, Cara Sulyok Apr 2015

Mathematical Modeling And Optimal Control Of Alternative Pest Management For Alfalfa Agroecosystems, Cara Sulyok

Mathematics Honors Papers

This project develops mathematical models and computer simulations for cost-effective and environmentally-safe strategies to minimize plant damage from pests with optimal biodiversity levels. The desired goals are to identify tradeoffs between costs, impacts, and outcomes using the enemies hypothesis and polyculture in farming. A mathematical model including twelve size- and time-dependent parameters was created using a system of non-linear differential equations. It was shown to accurately fit results from open-field experiments and thus predict outcomes for scenarios not covered by these experiments.

The focus is on the application to alfalfa agroecosystems where field experiments and data were conducted and provided …


Mathematical Modeling Of Immune Responses To Hepatitis C Virus Infection, Ivan Ramirez Dec 2014

Mathematical Modeling Of Immune Responses To Hepatitis C Virus Infection, Ivan Ramirez

Electronic Theses and Dissertations

An existing mathematical model of ordinary differential equations was studied to better understand the interactions between hepatitis C virus (HCV) and the immune system cells in the human body. Three possible qualitative scenarios were explored: dominant CTL response, dominant antibody response, and coexistence. Additionally, a sensitivity analysis was carried out to rank model parameters for each of these scenarios. Therapy was addressed as an optimal control problem. Numerical solutions of optimal controls were computed using a forward-backward sweep scheme for each scenario. Model parameters were estimated using ordinary least squares fitting from longitudinal data (serum HCV RNA measurements) given in …


Rapid Indirect Trajectory Optimization On Highly Parallel Computing Architectures, Thomas Antony Oct 2014

Rapid Indirect Trajectory Optimization On Highly Parallel Computing Architectures, Thomas Antony

Open Access Theses

Trajectory optimization is a field which can benefit greatly from the advantages offered by parallel computing. The current state-of-the-art in trajectory optimization focuses on the use of direct optimization methods, such as the pseudo-spectral method. These methods are favored due to their ease of implementation and large convergence regions while indirect methods have largely been ignored in the literature in the past decade except for specific applications in astrodynamics. It has been shown that the shortcomings conventionally associated with indirect methods can be overcome by the use of a continuation method in which complex trajectory solutions are obtained by solving …


Models Linking Epidemiology With Immunology And Ecology, Eric Shu Numfor Aug 2014

Models Linking Epidemiology With Immunology And Ecology, Eric Shu Numfor

Doctoral Dissertations

Optimal control can be used to design intervention strategies for the control of infectious diseases and predator-prey systems. In this dissertation, we studied models encapsulating two relatively new areas of mathematical biology, which combine epidemiology with immunology and ecology.

We formulated immuno-epidemiological models of coupled within-host model of ordinary differential equations and between-host model of ordinary differential equations and partial differential equations, using the Human Immunodeficiency Virus (HIV) for illustration, and set a framework for optimal control of immuno-epidemiological models. By constructing an iterative sequence from a representation formula for a solution to the linked model and using the fixed-point …


Mathematical Methods Of Analysis For Control And Dynamic Optimization Problems On Manifolds, Robert J. Kipka Jun 2014

Mathematical Methods Of Analysis For Control And Dynamic Optimization Problems On Manifolds, Robert J. Kipka

Dissertations

Mathematical Methods Of Analysis For Control And Dynamic Optimization Problems On Manifolds Driven by applications in fields such as robotics and satellite attitude control, as well as by a need for the theoretical development of appropriate tools for the analysis of geometric systems, problems of control of dynamical systems on manifolds have been studied intensively during the past three decades. In this dissertation we suggest new mathematical techniques for the study of control and dynamic optimization problems on manifolds. This work has several components including: an extension of the classical Chronological Calculus to control and dynamical systems which are merely …


Optimal Control For Management In Gypsy Moth Models, Marco Vinisio Martinez Aug 2013

Optimal Control For Management In Gypsy Moth Models, Marco Vinisio Martinez

Doctoral Dissertations

The gypsy moth, Lymantria dispar (L.), is an invasive species and the most destructive forest defoliator in North America. Gypsy moth outbreaks are spatially synchronized over areas across hundreds of kilometers. Outbreaks can result in loss of timber and other forestry products. Greater losses tend to occur to the ecosystem services that forests provide, such as wildlife habitat, carbon sequestration, and nutrient cycling. The United States can be divided in three different areas: a generally infested area (populations established), an uninfested area (populations not established), and a transition zone between the two. There are different management programs matching these different …


Optimal Control Modeling And Simulation, With Application To Cholera Dynamics, Chairat Modnak Jul 2013

Optimal Control Modeling And Simulation, With Application To Cholera Dynamics, Chairat Modnak

Mathematics & Statistics Theses & Dissertations

The theory of optimal control, a modern extension of the calculus of variations. has found many applications in a wide range of scientific fields, particularly in epidemiology with respect to disease prevention and intervention. In this dissertation. we conduct optimal control modeling, simulation and analysis to cholera dynamics. Cholera is a severe intestinal infectious disease that remains a serious public health threat in developing countries. Transmission of cholera involves complex interactions between the human host, the pathogen, and the environment. The worldwide cholera outbreaks and their increasing severity, frequency and duration in recent years underscore the gap between the complex …


Transmission Rate In Partial Differential Equation In Epidemic Models, Alaa Elkadry Jan 2013

Transmission Rate In Partial Differential Equation In Epidemic Models, Alaa Elkadry

Theses, Dissertations and Capstones

The rate at which susceptible individuals become infected is called the transmission rate. It is important to know this rate in order to study the spread and the effect of an infectious disease in a population. This study aims at providing an understanding of estimating the transmission rate from mathematical models representing the population dynamics of an infectious diseases using two different methods. Throughout, it is assumed that the number of infected individuals is known. In the first chapter, it includes historical background for infectious diseases and epidemic models and some terminology needed to understand the problems. Specifically, the partial …


Optimal Theory Applied In Integrodifference Equation Models And In A Cholera Differential Equation Model, Peng Zhong Aug 2011

Optimal Theory Applied In Integrodifference Equation Models And In A Cholera Differential Equation Model, Peng Zhong

Doctoral Dissertations

Integrodifference equations are discrete in time and continuous in space, and are used to model the spread of populations that are growing in discrete generations, or at discrete times, and dispersing spatially. We investigate optimal harvesting strategies, in order to maximize the profit and minimize the cost of harvesting. Theoretical results on the existence, uniqueness and characterization, as well as numerical results of optimized harvesting rates are obtained. The order of how the three events, growth, dispersal and harvesting, are arranged also affects the harvesting behavior.

Cholera remains a public health threat in many parts of the world and improved …


Variational Analysis And Optimal Control Of The Sweeping Process, Hoang Dinh Nguyen Jan 2011

Variational Analysis And Optimal Control Of The Sweeping Process, Hoang Dinh Nguyen

Wayne State University Dissertations

We formulate and study an optimal control problem for the sweeping(Moreau) process, where control functions enter the moving sweeping

set. To the best of our knowledge, this is the first study in the literature devoted to optimal control of the sweeping process. We first establish an existence theorem of optimal solutions and then derive necessary optimality conditions for this optimal control problem of a new type, where the dynamics is governed by discontinuous differential inclusions with variable right-hand sides. Our approach to necessary optimality conditions is based on the method of discrete approximations and advanced tools of variational analysis and …


A Method To Accomplish The Optimal Control Of Continuous Dynamical Systems With Impulse Controls Via Discrete Optimal Control And Utilizing Optimal Control Theory To Explore The Emergence Of Synchrony., Rachel Natalie Graves Aug 2010

A Method To Accomplish The Optimal Control Of Continuous Dynamical Systems With Impulse Controls Via Discrete Optimal Control And Utilizing Optimal Control Theory To Explore The Emergence Of Synchrony., Rachel Natalie Graves

Doctoral Dissertations

This research concerns the development of new optimal control methodologies and applications. In the first chapter we consider systems of ordinary differential equations subject to a restricted number of impulse controls. Examples of such systems include tumor growth, in which case the impulsive control is the administration of medication, and ecological invasion, in which case the impulse control is the release of predator species. Impulse control problems are typically solved via related partial differential equations known as quasi-variational inequalities. We show that these types of impulse control problems can be formulated as a discrete optimal control problems. Furthermore, this formulation …