Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Ligand-Promoted Dissolution Of Uranyl Phosphate Across Scales, Brennan Ferguson Dec 2022

Ligand-Promoted Dissolution Of Uranyl Phosphate Across Scales, Brennan Ferguson

All Dissertations

The formation of uranyl phosphate precipitate is a remediation strategy because the low solubility of uranyl phosphate minerals, like chernikovite, limits the mobility of uranium in contaminated soils. However, organic ligands can complex with aqueous metal cations to form more soluble species. For example, citrate is a commonly occurring organic ligand produced by plants and microbes that increases the solubility of uranium and therefore the dissolution of uranyl phosphate minerals in the uranyl phosphate-citrate system. This effect is an important control on the mobility of uranium in organic-rich, and near-surface vegetated environments. Nevertheless, key aspects of the citrate-uranyl phosphate system …


Immobilization Of Uranium And Iodine By Calcium Phosphate Minerals, Angel L. Jimenez-Arroyo Aug 2022

Immobilization Of Uranium And Iodine By Calcium Phosphate Minerals, Angel L. Jimenez-Arroyo

Theses and Dissertations

This dissertation is comprised of three independent but interconnected studies with the scope of further understanding uranium and iodine partitioning between apatite and fluid. The studies herein presented investigated: 1) brushite to apatite crystallization method; 2) the degree of uranium incorporation into apatite; 3) the degree of iodine incorporation into apatite. The importance of this work is assessing the role of apatite in immobilizing these elements, where uranium is a major component of spent nuclear fuel and iodine is a chemical analog of its radioactive isotope (129I). Once we understand the incorporation mechanisms, we will provide data that …


Rock-Fluid Interaction And The Incorporation Of Cations Into Calcite During Recrystallization In Multiple Hydrothermal Systems., Van Anh Nguyen Aug 2022

Rock-Fluid Interaction And The Incorporation Of Cations Into Calcite During Recrystallization In Multiple Hydrothermal Systems., Van Anh Nguyen

Theses and Dissertations

Fluid-rock interaction causes an exchange of isotopes or elements through various reactions. The rate of these reactions strongly depends on temperature. The interaction involves dissolution precipitation, chemical exchange reactions, redox reactions, diffusion, and their combinations. The goal of studying fluid-rock interaction is to understand the change in mineral chemistry of the rock materials when in contact with an aqueous solution. These processes occur in all regions of the Earth where aqueous solutions are found. This work is comprised of three independent studies which provide an understanding about crystallization processes under multiple hydrothermal conditions with geological and environmental applications.

In the …


Dissolution And Electrochemical Recovery Of Uo2, Uo3, And U3o8 In Ionic Liquids, Katherine Iolani Thornock Luebke Aug 2022

Dissolution And Electrochemical Recovery Of Uo2, Uo3, And U3o8 In Ionic Liquids, Katherine Iolani Thornock Luebke

UNLV Theses, Dissertations, Professional Papers, and Capstones

This research explores a novel method of increasing the solubility of uranium oxides and other actinide oxides in room temperature ionic liquids (IL) using direct dissolution. The goal is to further expand our knowledge of actinide dissolution and possible nuclear fuel cycle material applications using ionic liquids. The novelty of the methods is focused on the use of oxidizing gas generated using air passed through an ozone generator. While examples of dissolution exist in IL using acidic functionalized ionic liquids, the solubility of all possible oxide species was not demonstrated. Also, the addition of aqueous acid to IL containing actinide …


Wetland Uranium Transport Via Iron-Organic Matter Flocs And Hyporheic Exchange, Connor J. Parker May 2022

Wetland Uranium Transport Via Iron-Organic Matter Flocs And Hyporheic Exchange, Connor J. Parker

All Dissertations

Uranium (U) released from the M-Area at the Department of Energy Savannah River Site into Tims Branch, a seasonal wetland and braided stream system, is estimated to be 43,500 kg between 1965 and 1984. The motivation for this work is the uranium’s persistence in the wetland for decades, where it is estimated that 80% of the U currently remains in the Tims Branch wetland. U has begun to incorporate into wetland iron (Fe) and carbon cycles, associating with local Fe mineralogy and deposits of rich wetland organic matter (OM). The objective of this work is to characterize the chemical phases …


Mass Transport Of Uranium During Recharge Of Surface Water To Contaminated Groundwater, Kendyl Nicole Hoss May 2022

Mass Transport Of Uranium During Recharge Of Surface Water To Contaminated Groundwater, Kendyl Nicole Hoss

Theses and Dissertations

This study characterized the predominant mass transport mechanisms of uranium during river water recharge to contaminated groundwater to better characterize its mobility. It was hypothesized that the mass transfer of uranium from the solid phase to the aqueous phase was occurring during periods of river water to groundwater recharge via concentration-driven desorption. Sediment data confirmed the presence of uranium on the solid phase via nitric acid extraction. The recharge of river water to the saturated zone of a uranium-contaminated aquifer was simulated in a multi-well tracer test. The injection fluid was Little Wind River water and was traced with added …


Revisiting The Chemistry Of Uranium And Rhenium Fluorides: Implication To Fuel Cycle And Nuclear Forensics Science, James Amos-Aimé Louis-Jean May 2022

Revisiting The Chemistry Of Uranium And Rhenium Fluorides: Implication To Fuel Cycle And Nuclear Forensics Science, James Amos-Aimé Louis-Jean

UNLV Theses, Dissertations, Professional Papers, and Capstones

Fluorine plays a major role in the nuclear industry where F2(g) and HF(g) are critical to the preparation of UF6 and UF4. These materials are prepared for uranium enrichment to increase the isotopic concentration of 235U. During separation efforts, the isotope 99Tc (a high yield fission product, 6.1% from 235U) is extracted along with uranium and can be converted to binary technetium fluorides (i.e., TcF4, TcF6) during re-enrichment of used uranium material. This provides a route for 99Tc to reenter the reactor environment and affect the nuclear properties of fuel pellets made with reprocessed uranium. The objective of this work …


Application Of Natural Radioactivity For Hydrogeological And Environmental Assessment Of Groundwater In Ras Alkhaimah, Uae, Mohammed Nasser Abdullah Al-Saqri Mar 2022

Application Of Natural Radioactivity For Hydrogeological And Environmental Assessment Of Groundwater In Ras Alkhaimah, Uae, Mohammed Nasser Abdullah Al-Saqri

Theses

Groundwater includes a certain concentration of natural radioactive isotopes of uranium (U) and its decay products (daughters) like radon (Rn). Defining the concentration levels, spatial distribution, and possible environmental impact of these isotopes in groundwater is vital for sustainable groundwater resources in the United Arab Emirates (UAE). This dissertation focuses on documenting the distribution and determining the probable environmental impact and sources of Uranium-235 (235U), Uranium-238 (238U), and Radon-222 (222Rn) in groundwater in the Northern part of the UAE and specifically in the Wadi Al Bih aquifer in Ras Al Khaimah Emirate. The sampled …


Molten Salt Technologies For Advanced Nuclear Fuel Cycles And Molten Salt Reactors, Dimitris Killinger Jan 2022

Molten Salt Technologies For Advanced Nuclear Fuel Cycles And Molten Salt Reactors, Dimitris Killinger

Theses and Dissertations

This dissertation provides five topics—an assessment of different monitoring and analytical techniques often cited in the literature for molten salt systems and designs for nuclear engineering applications. First, we explored commonly used materials for quasi-reference electrodes in molten chloride salts. Second, the limitations of the electrochemical analysis known as cyclic voltammetry due to the concentration of uranium(III) present were being investigated. Third, we provided an experimental assessment on the development of a spectroelectrochemical cell for interrogating various spectroelectrochemical techniques, namely chronoabsorptometry and chronofluorometry, and their limitations due to the presence of uranium(III) ions. Fourth, a study on the corrosion resistance …