Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Quantum State Estimation And Tracking For Superconducting Processors Using Machine Learning, Shiva Lotfallahzadeh Barzili Dec 2021

Quantum State Estimation And Tracking For Superconducting Processors Using Machine Learning, Shiva Lotfallahzadeh Barzili

Computational and Data Sciences (PhD) Dissertations

Quantum technology has been rapidly growing; in particular, the experiments that have been performed with superconducting qubits and circuit QED have allowed us to explore the light-matter interaction at its most fundamental level. The study of coherent dynamics between two-level systems and resonator modes can provide insight into fundamental aspects of quantum physics, such as how the state of a system evolves while being continuously observed. To study such an evolving quantum system, experimenters need to verify the accuracy of state preparation and control since quantum systems are very fragile and sensitive to environmental disturbance. In this thesis, I look …


Deep Learning Applications In Medical Bioinformatics, Ziad Omar Oct 2021

Deep Learning Applications In Medical Bioinformatics, Ziad Omar

Electronic Theses and Dissertations

After a patient’s breast cancer diagnosis, identifying breast cancer lymph node metastases is one of the most important and critical factor that is directly related to the patient’s survival. The traditional way to examine the existence of cancer cells in the breast lymph nodes is through a lymph node procedure, biopsy. The procedure process is time-consuming for the patient and the provider, costly, and lacks accuracy as not every lymph node is examined. The intent of this study is to develop an artificial neural network (ANNs) that would map genetic biomarkers to breast lymph node classes using ANNs. The neural …


Neural Network-Based Multi-Task Learning For Product Opinion Mining, Manil Patel Oct 2021

Neural Network-Based Multi-Task Learning For Product Opinion Mining, Manil Patel

Electronic Theses and Dissertations

Aspect Based Opinion Mining (ABOM) systems take user's reviews or posts as input from social media. The system aims to extract the aspect terms (e.g., pizza) and categories (e.g., food) and their polarities, to help the customers and identify product weaknesses. By solving these product weaknesses, companies can enhance customer satisfaction, increase sales, and boost revenues. Neural networks are widely used as classification algorithms for performing ABOM tasks for both the training (learning) phase from historical reviews to form class labels and the testing phase to predict the label for unknown data (new reviews). Neural network algorithms consist of artificial …


Can Parallel Gravitational Search Algorithm Effectively Choose Parameters For Photovoltaic Cell Current Voltage Characteristics?, Alan Kirkpatrick May 2021

Can Parallel Gravitational Search Algorithm Effectively Choose Parameters For Photovoltaic Cell Current Voltage Characteristics?, Alan Kirkpatrick

Honors Projects

This study asks the question “Can parallel Gravitational Search Algorithm (GSA) effectively choose parameters for photovoltaic cell current voltage characteristics?” These parameters will be plugged into the Single Diode Model to create the IV curve. It will also investigate Particle Swarm Optimization (PSO) and a population based random search (PBRS) to see if GSA performs the search better and or more quickly than alternative algorithms


Unsupervised And Supervised Learning For Rna-Protein Interactions And Annotations, Kateland Sipe Apr 2021

Unsupervised And Supervised Learning For Rna-Protein Interactions And Annotations, Kateland Sipe

Honors Projects

This project analyzed the base and amino acid interactions and annotations through the use of unsupervised and supervised learning techniques. For unsupervised learning, clustering found the data was not able to be distinguished into clear groups which matched the original annotations through kmeans clustering and hierarchical clustering. For supervised learning, the use of random forest, glmnet, and deep learning neural networks were successful in creating accurate predictions. However, machine learning likely will not be able to replace the original complex program, but could be used for possible simplification.


Deep Learning For Compressive Sar Imaging With Train-Test Discrepancy, Morgan R. Mccamey Jan 2021

Deep Learning For Compressive Sar Imaging With Train-Test Discrepancy, Morgan R. Mccamey

Browse all Theses and Dissertations

We consider the problem of compressive synthetic aperture radar (SAR) imaging with the goal of reconstructing SAR imagery in the presence of under sampled phase history. While this problem is typically considered in compressive sensing (CS) literature, we consider a variety of deep learning approaches where a deep neural network (DNN) is trained to form SAR imagery from limited data. At the cost of computationally intensive offline training, on-line test-time DNN-SAR has demonstrated orders of magnitude faster reconstruction than standard CS algorithms. A limitation of the DNN approach is that any change to the operating conditions necessitates a costly retraining …


Implementing A Neural Network For Supervised Learning With A Random Configuration Of Layers And Nodes, Kane A. Phillips Jan 2021

Implementing A Neural Network For Supervised Learning With A Random Configuration Of Layers And Nodes, Kane A. Phillips

Electronic Theses and Dissertations

Deep learning has a substantial amount of real-life applications, making it an increasingly popular subset of artificial intelligence over the last decade. These applications come to fruition due to the tireless research and implementation of neural networks. This paper goes into detail on the implementation of supervised learning neural networks utilizing MATLAB, with the purpose being to generate a neural network based on specifications given by a user. Such specifications involve how many layers are in the network, and how many nodes are in each layer. The neural network is then trained based on known sample values of a function …