Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Automatic Target Cueing Of Hyperspectral Image Data, Terry A. Wilson Sep 1998

Automatic Target Cueing Of Hyperspectral Image Data, Terry A. Wilson

Theses and Dissertations

Modern imaging sensors produce vast amounts data, overwhelming human analysts. One such sensor is the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) hyperspectral sensor. The AVIRIS sensor simultaneously collects data in 224 spectral bands that range from 0.4µm to 2.5µm in approximately 10nm increments, producing 224 images, each representing a single spectral band. Autonomous systems are required that can fuse "important" spectral bands and then classify regions of interest if all of this data is to be exploited. This dissertation presents a comprehensive solution that consists of a new physiologically motivated fusion algorithm and a novel Bayes optimal self-architecting classifier …


Representations, Approximations, And Algorithms For Mathematical Speech Processing, Laura R. Suzuki Jun 1998

Representations, Approximations, And Algorithms For Mathematical Speech Processing, Laura R. Suzuki

Theses and Dissertations

Representing speech signals such that specific characteristics of speech are included is essential in many Air Force and DoD signal processing applications. A mathematical construct called a frame is presented which captures the important time-varying characteristic of speech. Roughly speaking, frames generalize the idea of an orthogonal basis in a Hilbert space, Specific spaces applicable to speech are L2(R) and the Hardy spaces Hp(D) for p> 1 where D is the unit disk in the complex plane. Results are given for representations in the Hardy spaces involving Carleson's inequalities (and its extensions), …


Trigonometric Transforms For Image Reconstruction, Thomas M. Foltz Jun 1998

Trigonometric Transforms For Image Reconstruction, Thomas M. Foltz

Theses and Dissertations

This dissertation demonstrates how the symmetric convolution-multiplication property of discrete trigonometric transforms can be applied to traditional problems in image reconstruction with slightly better performance than Fourier techniques and increased savings in computational complexity for symmetric point spread functions. The fact that the discrete Fourier transform a circulant matrix provides an alternate way to derive the symmetric convolution-multiplication property for discrete trigonometric transforms. Derived in this manner, the symmetric convolution-multiplication property extends easily to multiple dimensions and generalizes to multidimensional asymmetric sequences. The symmetric convolution-multiplication property allows for linear filtering of degraded images via point-by-point multiplication in the transform domain …


Linear Reconstruction Of Non-Stationary Image Ensembles Incorporating Blur And Noise Models, Stephen D. Ford Mar 1998

Linear Reconstruction Of Non-Stationary Image Ensembles Incorporating Blur And Noise Models, Stephen D. Ford

Theses and Dissertations

Two new linear reconstruction techniques are developed to improve the resolution of images collected by ground-based telescopes imaging through atmospheric turbulence. The classical approach involves the application of constrained least squares (CLS) to the deconvolution from wavefront sensing (DWFS) technique. The new algorithm incorporates blur and noise models to select the appropriate regularization constant automatically. In all cases examined, the Newton-Raphson minimization converged to a solution in less than 10 iterations. The non-iterative Bayesian approach involves the development of a new vector Wiener filter which is optimal with respect to mean square error (MSE) for a non-stationary object class degraded …


Performance Of Imaging Laser Radar In Rain And Fog, Kathleen M. Campbell Mar 1998

Performance Of Imaging Laser Radar In Rain And Fog, Kathleen M. Campbell

Theses and Dissertations

The Air Force is currently developing imaging laser radar systems (ladar) for use on precision guided munitions and other imaging systems. Scientists at Eglin Air Force Base, in conjunction with Wright Laboratories, are testing a 1.06-um wavelength ladar system and need to understand the weather effects on the ladar images. As the laser beam propagates through the atmosphere, fog droplets and raindrops can cause image degradation, and these image degradations are manifested as either dropouts or false returns. An analysis of the dropouts and false returns helped to quantify the performance of the system in adverse weather conditions. Statistical analysis …