Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Case Study: Feasibility Analysis Of Renewable Energy Supply Systems In A Small Grid Connected Resort, Jody Robins May 2009

Case Study: Feasibility Analysis Of Renewable Energy Supply Systems In A Small Grid Connected Resort, Jody Robins

UNLV Theses, Dissertations, Professional Papers, and Capstones

This paper presents a case study on the feasibility of a small grid connected resort in the marine west coast climate of Canada to implement a renewable energy supply system. The current industry conditions of three renewable energy systems are explored including small and large wind energy conversion systems, solar photovoltaic cell systems, and energy cell systems. Furthermore, these three systems are evaluated using the power load, wind, and solar radiation information from a specific resort. The renewable energy source assessment and optimization software HOMER (National Renewable Energy Laboratory, US) is used to evaluate the costs and benefits of each …


Characterization Of Iron Oxide Thin Films For Photoelectrochemical Hydrogen Production, Kyle Eustace Nelson George Jan 2009

Characterization Of Iron Oxide Thin Films For Photoelectrochemical Hydrogen Production, Kyle Eustace Nelson George

UNLV Theses, Dissertations, Professional Papers, and Capstones

Solar energy is the most sustainable source of energy available. However, solar applications such as photovoltaic cells represent only a partial solution to weaning our dependence upon fossil fuels. Several methods of storing solar energy are currently being pursued, and chemical storage stands out as a promising option - combining design simplicity with high energy density, with hydrogen being particularly attractive because of its abundance and inherently clean nature. A monolithic Photoelectrochemical (PEC) device that produces hydrogen by electrolyzing water directly from sunlight has the benefit of utilizing "free" solar energy to drive the reaction.

Although α-Fe 2 O 3 …


Two-Tank Indirect Thermal Storage Designs For Solar Parabolic Trough Power Plants, Joseph E. Kopp Jan 2009

Two-Tank Indirect Thermal Storage Designs For Solar Parabolic Trough Power Plants, Joseph E. Kopp

UNLV Theses, Dissertations, Professional Papers, and Capstones

The performance of a solar thermal parabolic trough plant with thermal storage is dependent upon the arrangement of the heat exchangers that ultimately transfer energy from the sun into steam. The steam is utilized in a traditional Rankine cycle power plant. The most commercially accepted thermal storage design is an indirect two-tank molten salt storage system where molten salt interacts with the solar field heat transfer fluid (HTF) through a heat exchanger. The molten salt remains in a closed loop with the HTF and the HTF is the heat source for steam generation. An alternate indirect two tank molten salt …


Optimization Of Channel Geometry In A Proton Exchange Membrane (Pem) Fuel Cell, Jephanya Kasukurthi Jan 2009

Optimization Of Channel Geometry In A Proton Exchange Membrane (Pem) Fuel Cell, Jephanya Kasukurthi

UNLV Theses, Dissertations, Professional Papers, and Capstones

Bipolar plates are the important components of the PEM fuel cell. The flow distribution inside the bipolar plate should be uniform. Non-uniform flow distribution inside the bipolar leads to poor performance of the fuel cell and wastage of expensive catalyst. A single channel PEM fuel cell is taken and electrochemical analysis is carried out on it. The results are compared with the available published experimental data obtained by other research group, and they are found to be in good agreement. A baseline design of the bipolar plate is taken and numerical analysis is carried out. The results show that the …


Optimization Of Solid Oxide Fuel Cell Interconnect Design, Krishna C. Pulagam Jan 2009

Optimization Of Solid Oxide Fuel Cell Interconnect Design, Krishna C. Pulagam

UNLV Theses, Dissertations, Professional Papers, and Capstones

Performance of solid oxide fuel cells (SOFC) is dependent of a set of complex physical and chemical processes occurring simultaneously. Interconnect for SOFC is important as it provides electrical connection between anode of one individual cell to the cathode of neighboring one. It also acts as a physical barrier to protect the air electrode material from the reducing environment of the fuel on the fuel electrode side, and it equally prevents the fuel electrode material from contacting with oxidizing atmosphere of the oxidant electrode side. A three-dimensional numerical model has been developed to evaluate the SOFC including the current collector, …


Experimental And Numerical Study Of A Proton Exchange Membrane Electrolyzer For Hydrogen Production, Sachin S. Deshmukh Jan 2009

Experimental And Numerical Study Of A Proton Exchange Membrane Electrolyzer For Hydrogen Production, Sachin S. Deshmukh

UNLV Theses, Dissertations, Professional Papers, and Capstones

Hydrogen as a fuel source has received attention from researchers globally due to its potential to replace fossil based fuels for energy production. Research is being performed on hydrogen production, storage and utilization methods to make its use economically feasible relative to current energy sources. The PEM electrolyzer is used to produce hydrogen and oxygen using water and electricity. Focus of our study is to provide a benchmark experiment and numerical model of a single cell electrolyzer that can assist in improving the current state of understanding of this system. Parametric analysis of an experimental cell was performed to understand …