Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

William & Mary

Physics

Undergraduate Honors Theses

Publication Year

Articles 1 - 18 of 18

Full-Text Articles in Physical Sciences and Mathematics

Materials Characterization For Microwave Atom Chip Development, Jordan Shields May 2023

Materials Characterization For Microwave Atom Chip Development, Jordan Shields

Undergraduate Honors Theses

This thesis describes research to characterize materials to be implemented on a microwave atom trap chip, which will be able to trap and spatially manipulate atoms using the spin-specific microwave AC Zeeman effect. Potential applications of this research include atom-based interferometry and quantum computing.

Namely, this thesis describes the characterization of the following: (1) the dielectric constant of a well-characterized substrate, Rogers RO4350B, in order to provide proof-of-concept for a method that can be applied to the chip’s substrate, aluminum nitride (AlN), (2) the maximum current that will be able to be applied to the chip, and (3) surface roughness …


Monoenergetic Neutrinos From Wimp Annihilations In Jupiter, George French May 2023

Monoenergetic Neutrinos From Wimp Annihilations In Jupiter, George French

Undergraduate Honors Theses

Several important lines of evidence point to the existence of dark matter, but it has not yet been experimentally detected. There are several proposed candidates for what dark matter is like, the most popular being weakly interacting massive particles (WIMPs). It has been well-established in the literature that WIMPs would be captured by the Sun after scattering off of atomic nuclei to a velocity lower than the escape velocity. Over time, many WIMPs would be captured and begin to annihilate in the solar core; this would result in the production of kaons that decay at rest into monoenergetic 236 MeV …


Pion Detection For The Moller Parity-Violating Electron Scattering Experiment, Michael Tristan Hurst May 2023

Pion Detection For The Moller Parity-Violating Electron Scattering Experiment, Michael Tristan Hurst

Undergraduate Honors Theses

The MOLLER Experiment at Jefferson Lab intends to make a precise measurement of the weak charge of the electron through parity-violating electron scattering. To achieve the level of precision required for the experiment, background rates of events other than electron-electron scattering must be known. Working with data from Monte-Carlo simulations created using a GEANT4 simulation package, I show that the combined signal from two existing detector subsystems of the MOLLER experiment allow for particle identification between electron and pion events. I worked to optimize an additional ‘Pion Exit Scintillator’ which improves the ability to distinguish particle identity at the cost …


Spatial Variability Of Alkali-Metal Polarization, Lauren Vannell May 2023

Spatial Variability Of Alkali-Metal Polarization, Lauren Vannell

Undergraduate Honors Theses

An experiment was conducted at William & Mary to study how alkali polarization varies spatially in a spherical cell during the process of optical pumping. Similar cells are used to study the neutron via electron scattering from polarized 3He nuclei, and those experiments could be improved if alkali polarization is maximized and uniformly distributed throughout the cell. The results of this experiment indicate that the alkali polarization is non-uniform and more heavily concentrated on the side of the cell facing the pump laser.


Black Hole Entropy In Ads/Cft And The Schwinger-Keldysh Formalism, Luke Mrini May 2023

Black Hole Entropy In Ads/Cft And The Schwinger-Keldysh Formalism, Luke Mrini

Undergraduate Honors Theses

The Schwinger-Keldysh formalism for non-equilibrium field theory provides valuable tools for studying the black hole information loss paradox. In particular, there exists a Noether-like procedure to obtain the entropy density of a system by a discrete Kubo-Martin-Schwinger (KMS) variation of the action. Here, this Noether-like procedure is applied to the boundary action of an asymptotically anti-de Sitter (aAdS) black hole spacetime in maximally extended Kruskal coordinates. The result is the Kubo formula for shear viscosity, which is known in theories with an Einstein gravity dual to have a universal, constant ratio with the entropy density and is proportional to the …


A Study Of Reciprocal Underwater Motion And Its Use In Algae Harvesting, Marguerite Bright May 2023

A Study Of Reciprocal Underwater Motion And Its Use In Algae Harvesting, Marguerite Bright

Undergraduate Honors Theses

In 2009, many research groups at different companies and universities were funded by Statoil to study the use of algae as a potential biofuel. Combined with the Chesapeake Bay TMDL given by the EPA, a team at William & Mary and VIMS studied the growth and harvest of wild algae in the York River. This method also removed harmful nutrients such as nitrogen and phosphorus from the waterways. Other independent research projects stemmed from this. In 2014, a research team sought to commercialize and automate the IWAGS system, and found that a single oscillating blade was the most effective. This …


Development Of A 780 Nm External Cavity Diode Laser For Rubidium Spectroscopy, Catherine Sturner May 2023

Development Of A 780 Nm External Cavity Diode Laser For Rubidium Spectroscopy, Catherine Sturner

Undergraduate Honors Theses

This thesis describes the work done to improve an external cavity diode laser. These improvements consisted of constructing an insulated housing to stabilize the temperature of the laser, tuning the proportional-integral-derivative feedback of the temperature controller, achieving resonance frequencies of rubidium, and implementing and optimizing feed-forward scanning of the frequency of the laser. The laser was then successfully used to measure the linewidth of another laser in the laboratory to better understand how that laser could be best used. The knowledge gained in this thesis can also be used to change the frequency of the laser to achieve other resonances …


An Atomic Magnetometer Based On Nonlinear Magneto-Optical Polarization Rotation, Jiahui Li May 2022

An Atomic Magnetometer Based On Nonlinear Magneto-Optical Polarization Rotation, Jiahui Li

Undergraduate Honors Theses

Magnetometers with high precision and accuracy have wide applications across various areas. We are developing an atomic magnetometer based on nonlinear magneto-optical rotation (NMOR). The magnetometer measures the polarization rotation of a light field, which is proportional to the magnetic field strength. However, such a magnetometer usually has a limited operation range and stops working for fields stronger than the Earth's magnetic field. To overcome this shortage, we implement frequency and amplitude modulation that induces side frequencies in the Fourier space which allows us to measure strong magnetic fields, up to 200 mG. We have achieved 60 pT sensitivity for …


Development Of A Vector Magnetometer Based On Electromagnetically Induced Transparency In 87rb Atomic Vapor, Alexander Toyryla May 2022

Development Of A Vector Magnetometer Based On Electromagnetically Induced Transparency In 87rb Atomic Vapor, Alexander Toyryla

Undergraduate Honors Theses

We present progress towards the development of an atomic magnetometer capable of accurate scalar and vector magnetic field measurements with high sensitivity and no need for external calibration. The proposed device will use the interaction between a bi-chromatic laser field and rubidium vapor to derive magnetic field magnitude and direction from measured amplitudes of Electromagnetically Induced Transparency (EIT) resonances. Since the proposed method requires precision control of light polarization, we observe the performance capabilities of a liquid crystal device to dynamically rotate the polarization of the laser field. Another goal in this project is to establish a polarization locking mechanism …


Quantum Federated Learning: Training Hybrid Neural Networks Collaboratively, Anneliese Brei May 2022

Quantum Federated Learning: Training Hybrid Neural Networks Collaboratively, Anneliese Brei

Undergraduate Honors Theses

This thesis explores basic concepts of machine learning, neural networks, federated learning, and quantum computing in an effort to better understand Quantum Machine Learning, an emerging field of research. We propose Quantum Federated Learning (QFL), a schema for collaborative distributed learning that maintains privacy and low communication costs. We demonstrate the QFL framework and local and global update algorithms with implementations that utilize TensorFlow Quantum libraries. Our experiments test the effectiveness of frameworks of different sizes. We also test the effect of changing the number of training cycles and changing distribution of training data. This thesis serves as a synoptic …


Alkali Linewidths Under High Temperatures And Pressures Of 3he, Michael Parker May 2022

Alkali Linewidths Under High Temperatures And Pressures Of 3he, Michael Parker

Undergraduate Honors Theses

Current research at Thomas Jefferson National Accelerator Facility is being conducted to study the spin structure of the neutron through collisions with polarized 3He nuclei. The helium is contained in high pressure glass vessels (called cells) along with nitrogen, rubidium, and potassium. To deduce the spin structure from collisions, we need to know the precise number density of 3He in the cell. The process of polarizing 3He through spin-exchange optical pumping requires nitrogen and alkali metal. We can use the absorption linewidths of rubidium and potassium to more accurately determine the density of helium. Throughout my research, I collected absorption …


Co-Planar Waveguides For Microwave Atom Chips, Morgan Logsdon May 2022

Co-Planar Waveguides For Microwave Atom Chips, Morgan Logsdon

Undergraduate Honors Theses

This thesis describes research to develop co-planar waveguides (CPW) for coupling microwaves from mm-scale coaxial cables into 50 μm-scale microstrip transmission lines of a microwave atom chip. This new atom chip confines and manipulates atoms using spin-specific microwave AC Zeeman potentials and is particularly well suited for trapped atom interferometry. The coaxial-to-microstrip coupler scheme uses a focused CPW (FCPW) that shrinks the microwave field mode while maintaining a constant 50 Ω impedance for optimal power coupling. The FCPW development includes the simulation, design, fabrication, and testing of multiple CPW and microstrip prototypes using aluminum nitride substrates. Notably, the FCPW approach …


Investigation Of Tertiary Impact Cratering And Relation To Impact Physics Theory, Mikayla Huffman May 2022

Investigation Of Tertiary Impact Cratering And Relation To Impact Physics Theory, Mikayla Huffman

Undergraduate Honors Theses

Extraterrestrial impact crater formation is important in many subfields of planetary science, including geochronology, planetary formation, and dynamic fragmentation theory. Current dynamic fragmentation theory lacks scale dependence and relies heavily on terrestrial data. Exploring a range of impact and ejecta velocities as is produced by cratering events on the Moon may bridge the gap between heavily terrestrial-based theory and planetary data. The secondary craters of secondary craters deemed “tertiary craters,” have been theorized, but planetary images have not been of sufficient resolution to effectively search for them until recently. Tertiary craters are formed by relatively low-velocity fragments ejected by nearby …


Nonlocal Lorentz-Violating Modifications Of Qed, Qian Niu Dec 2021

Nonlocal Lorentz-Violating Modifications Of Qed, Qian Niu

Undergraduate Honors Theses

We consider nonlocal Lorentz-violating theories, with infinite-derivative quadratic terms. The nonlocal modifications in the form of exponential damping in the propagator lead to a better convergence of amplitudes than in the local theories. Moreover, the nonlocal Lorentz-violating theories are ghost-free and unitary when formulated in Minkowski space. We compute the loop effects assuming one-parameter and two-parameter nonlocal functions. By comparing the lower bound of the nonlocality scale with the Planck scale, we rule out these theories. We then review a more general argument, developed by Collins et al. (2004), that a microscopic theory with Lorentz violation around the Planck scale …


Simulation And Optimization Of Kinematics Measurements For The Moller Parity-Violating Electron-Electron Scattering Experiment, Lauren Carver May 2021

Simulation And Optimization Of Kinematics Measurements For The Moller Parity-Violating Electron-Electron Scattering Experiment, Lauren Carver

Undergraduate Honors Theses

This report describes the optimization of the sieve collimator that will be used for the MOLLER experiment at Jefferson Laboratory. The MOLLER experiment seeks to study the parity-violating asymmetry in electron-electron elastic scattering. For this project, Monte Carlo simulations were run using a GEANT4 simulation package, which includes the main geometry of the proposed experiment, and the essential physics reaction processes. A sieve collimator was added to the simulated geometry. This collimator has pin-hole openings to select scattered electrons at certain locations (radial and azimuthal positions) corresponding to specific scattering angles (theta, and phi). Analysis of the simulated data were …


Topology Of The O(3) Non-Linear Sigma Model Under The Gradient Flow, Stuart Thomas, Christopher Monahan May 2021

Topology Of The O(3) Non-Linear Sigma Model Under The Gradient Flow, Stuart Thomas, Christopher Monahan

Undergraduate Honors Theses

Quantum field theory is an extraordinarily successful framework that describes phenomena in particle physics and condensed matter. The O(3) non-linear sigma model (NLSM) is a specific theory used in both of these fields, describing ferromagnets and acting as a prototype for the strong nuclear force. It features topologically stable configurations known as instantons which cannot continuously evolve to the ground state. The topological susceptibility is a parameter that describes this stability and is predicted to vanish in physical theories, however numerical simulations find that the topological susceptibility diverges in the continuum limit. This issue has motivated the application of the …


Composite Gravity In Curved Spacetime, Austin Batz May 2021

Composite Gravity In Curved Spacetime, Austin Batz

Undergraduate Honors Theses

This work presents the development of a quantum theory of gravity motivated by diffeomorphism-invariance and background-independence. A composite graviton state that satisfies the linearized Einstein’s field equations has been identified via perturbative expansion about a curved vacuum spacetime. The emergence of this gravitational interaction is discussed, as well as cancellation of tadpoles and treatment of ultraviolet divergences via dimensional regularization. In other words, the formalism of quantum field theory is used to identify a gravitational interaction as an emergent phenomenon rather than as a fundamental aspect of nature. The lattice is proposed as a candidate for a physical regulator, and …


Progress Towards Electromagnetic Manipulation And Trapping Of Micro-Particles, Andrew John Beling May 2021

Progress Towards Electromagnetic Manipulation And Trapping Of Micro-Particles, Andrew John Beling

Undergraduate Honors Theses

This thesis describes research to investigate the electromagnetic manipulation of microspheres and microrings. The work consists of three main thrusts: 1) the use of an electric field gradient to move dielectric microspheres, 2) the use of an AC magnetic field to move a conducting ring, and 3) the preparation of substrates for a microwave atom chip. The electrostatic movement of dielectric polyethylene microspheres was observed and recorded with a CCD imaging system. The microspheres were suspended in various liquids and placed on top of a microstrip transmission line, which consists of a conducting copper trace separated from a ground plate …