Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Series

Fluorescence

Discipline
Institution
Publication Year
Publication
File Type

Articles 1 - 30 of 104

Full-Text Articles in Physical Sciences and Mathematics

6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew Mar 2024

6d Single-Fluorogen Orientation-Localization Microscopy For Elucidating The Architecture Of Beta-Sheet Assemblies And Biomolecular Condensates, Tingting Wu, Weiyan Zhou, Jai S. Rudra, Rohit V. Pappu, Matthew D. Lew

Electrical & Systems Engineering Publications and Presentations

We develop six-dimensional single-molecule orientation-localization microscopy (SMOLM) to measure the 3D positions and 3D orientations simultaneously of single fluorophores. We show how careful optimization of phase and polarization modulation components can encode phase, polarization, and angular spectrum information from each fluorescence photon into a microscope’s dipole-spread function. We used the transient binding and blinking of Nile red (NR) to characterize the helical structure of fibrils formed by designed amphipathic peptides, KFE8L and KFE8D, and the pathological amyloid-beta peptide Aβ42. We also deployed merocyanine 540 to uncover the interfacial architectures of biomolecular condensates.


The Use Of Fluorescence Lifetime Imaging (Flim) For In Situ Microbial Detection In Complex Mineral Substrates, Yekaterina G. Chmykh, Jay Nadeau Jan 2024

The Use Of Fluorescence Lifetime Imaging (Flim) For In Situ Microbial Detection In Complex Mineral Substrates, Yekaterina G. Chmykh, Jay Nadeau

Physics Faculty Publications and Presentations

The utility of fluorescence lifetime imaging microscopy (FLIM) for identifying bacteria in complex mineral matrices was investigated. Baseline signals from unlabelled Bacillus subtilis and Euglena gracilis, and Bacillus subtilis labelled with SYTO 9 were obtained using two-photon excitation at 730, 750 and 800 nm, identifying characteristic lifetimes of photosynthetic pigments, unpigmented cellular autofluorescence, and SYTO 9. Labelled and unlabelled B. subtilis were seeded onto marble and gypsum samples containing endolithic photosynthetic cyanobacteria and the ability to distinguish cells from mineral autofluorescence and nonspecific dye staining was examined in parallel with ordinary multichannel confocal imaging. It was found that FLIM …


Engineering Exosomes To Specifically Target The Mitochondria Of Brain Cells, Xin Yan, Xinqian Chen, Zhiying Shan, Lanrong Bi Dec 2023

Engineering Exosomes To Specifically Target The Mitochondria Of Brain Cells, Xin Yan, Xinqian Chen, Zhiying Shan, Lanrong Bi

Michigan Tech Publications, Part 2

Mitochondrial dysfunction is associated with various health conditions, including cardiovascular and neurodegenerative diseases. Mitochondrial-targeting therapy aims to restore or enhance mitochondrial function to treat or alleviate these conditions. Exosomes, small vesicles that cells secrete, containing a variety of biomolecules, are critical in cell-to-cell communication and have been studied as potential therapeutic agents. Exosome-based therapy has the potential to treat both cardiovascular and neurodegenerative diseases. Combining these two approaches involves using exosomes as carriers to transport mitochondrial-targeting agents to dysfunctional or damaged mitochondria within target cells. This article presents a new technique for engineering brain-derived exosomes that target mitochondria and has …


Engineering Exosomes To Specifically Target The Mitochondria Of Brain Cells, Xin Yan, Xinqian Chen, Zhiying Shan, Lanrong Bi Dec 2023

Engineering Exosomes To Specifically Target The Mitochondria Of Brain Cells, Xin Yan, Xinqian Chen, Zhiying Shan, Lanrong Bi

Michigan Tech Publications, Part 2

Mitochondrial dysfunction is associated with various health conditions, including cardiovascular and neurodegenerative diseases. Mitochondrial-targeting therapy aims to restore or enhance mitochondrial function to treat or alleviate these conditions. Exosomes, small vesicles that cells secrete, containing a variety of biomolecules, are critical in cell-to-cell communication and have been studied as potential therapeutic agents. Exosome-based therapy has the potential to treat both cardiovascular and neurodegenerative diseases. Combining these two approaches involves using exosomes as carriers to transport mitochondrial-targeting agents to dysfunctional or damaged mitochondria within target cells. This article presents a new technique for engineering brain-derived exosomes that target mitochondria and has …


Fluorescent Molecular Rotors As Versatile In Situ Sensors For Protein Quantitation, Kevin Daus, Sorachat Tharamak, Wanchai Pluempanupat, Peter Galie, Maria A Theodoraki, Emmanuel A Theodorakis, Mary Alpaugh Nov 2023

Fluorescent Molecular Rotors As Versatile In Situ Sensors For Protein Quantitation, Kevin Daus, Sorachat Tharamak, Wanchai Pluempanupat, Peter Galie, Maria A Theodoraki, Emmanuel A Theodorakis, Mary Alpaugh

Faculty Scholarship for the College of Science & Mathematics

Accurate protein quantitation is essential for many cellular mechanistic studies. Existing technology relies on extrinsic sample evaluation that requires significant volumes of sample as well as addition of assay-specific reagents and importantly, is a terminal analysis. This study exploits the unique chemical features of a fluorescent molecular rotor that fluctuates between twisted-to-untwisted states, with a subsequent intensity increase in fluorescence depending on environmental conditions (e.g., viscosity). Here we report the development of a rapid, sensitive in situ protein quantitation method using ARCAM-1, a representative fluorescent molecular rotor that can be employed in both non-terminal and terminal assays.


Research Instrumentation Center (Ric), Ryan Hilger, Purdue University Office Of Research Aug 2023

Research Instrumentation Center (Ric), Ryan Hilger, Purdue University Office Of Research

University Research Core Facility Boilerplate Descriptions

No abstract provided.


Using Deep Learning Model To Identify Iron Chlorosis In Plants, Munir Majdalawieh, Shafaq Khan, Md. T. Islam May 2023

Using Deep Learning Model To Identify Iron Chlorosis In Plants, Munir Majdalawieh, Shafaq Khan, Md. T. Islam

All Works

Iron deficiency in plants causes iron chlorosis which frequently occurs in soils that are alkaline (pH greater than 7.0) and that contain lime. This deficiency turns affected plant leaves to yellow, or with brown edges in advanced stages. The goal of this research is to use the deep learning model to identify a nutrient deficiency in plant leaves and perform soil analysis to identify the cause of the deficiency. Two pre-trained deep learning models, Single Shot Detector (SSD) MobileNet v2 and EfficientDet D0, are used to complete this task via transfer learning. This research also contrasts the architecture and performance …


Tenvr: Matlab-Based Toolbox For Environmental Research, Aleksandar I. Goranov, Rachel L. Sleighter, Dobromir A. Yordanov, Patrick G. Hatcher Jan 2023

Tenvr: Matlab-Based Toolbox For Environmental Research, Aleksandar I. Goranov, Rachel L. Sleighter, Dobromir A. Yordanov, Patrick G. Hatcher

Chemistry & Biochemistry Faculty Publications

With the advancements in science and technology, datasets become larger and more multivariate, which warrants the need for programming tools for fast data processing and multivariate statistical analysis. Here, the MATLAB-based Toolbox for Environmental Research "TEnvR" (pronounced "ten-ver") is introduced. This novel toolbox includes 44 open-source codes for automated data analysis from a multitude of techniques, such as ultraviolet-visible, fluorescence, and nuclear magnetic resonance spectroscopies, as well as from ultrahigh resolution mass spectrometry. Provided are codes for processing data (e.g., spectral corrections, formula assignment), visualization of figures, calculation of metrics, multivariate statistics, and automated work-up of large datasets. TEnvR allows …


Laser Spectroscopic Instrumentation For Biomedical And Environmental Applications, Unnikrishnan V K Dr. Nov 2022

Laser Spectroscopic Instrumentation For Biomedical And Environmental Applications, Unnikrishnan V K Dr.

Basic Science Collection

In this third decade of the 21st century, the environmental challenges we have ahead of us, set out in the UN's 2030 agenda for sustainable development, are many. Some of the major global environmental issues we need to resolve by 2030 are public health issues, soil and land pollution, water pollution etc. In view of this, we have been working on development of spectroscopic systems and methods to carry out fast, qualitative, and quantitative analysis of materials (solid/liquid/gas) located at distances of several tens of meters especially of samples, at not easily accessible locations, remotely. The complementary and layer-by-layer …


Labeling Microplastics With Fluorescent Dyes For Detection, Recovery, And Degradation Experiments, Zhiqiang Gao, Kendall Wontor, James V. Cizdziel Nov 2022

Labeling Microplastics With Fluorescent Dyes For Detection, Recovery, And Degradation Experiments, Zhiqiang Gao, Kendall Wontor, James V. Cizdziel

Faculty and Student Publications

Staining microplastics (MPs) for fluorescence detection has been widely applied in MP analyses. However, there is a lack of standardized staining procedures and conditions, with different researchers using different dye concentrations, solvents, incubation times, and staining temperatures. Moreover, with the limited types and morphologies of commercially available MPs, a simple and optimized approach to making fluorescent MPs is needed. In this study, 4 different textile dyes, along with Nile red dye for comparison, are used to stain 17 different polymers under various conditions to optimize the staining procedure. The MPs included both virgin and naturally weathered polymers with different sizes …


Appendix B - Data Validation Reports, Pioneer Technical Services, Inc. Jul 2022

Appendix B - Data Validation Reports, Pioneer Technical Services, Inc.

Silver Bow Creek/Butte Area Superfund Site

No abstract provided.


Uv- And Visible-Light Photopatterning Of Molecular Gradients Using The Thiol–Yne Click Reaction, Mark Mitmoen, Ofer Kedem Jul 2022

Uv- And Visible-Light Photopatterning Of Molecular Gradients Using The Thiol–Yne Click Reaction, Mark Mitmoen, Ofer Kedem

Chemistry Faculty Research and Publications

The rational design of chemical coatings is used to control surface interactions with small molecules, biomolecules, nanoparticles, and liquids as well as optical and other properties. Specifically, micropatterned surface coatings have been used in a wide variety of applications, including biosensing, cell growth assays, multiplexed biomolecule interaction arrays, and responsive surfaces. Here, a maskless photopatterning process is studied, using the photocatalyzed thiol–yne “click” reaction to create both binary and gradient patterns on thiolated surfaces. Nearly defect-free patterns are produced by first coating glass surfaces with mercaptopropylsilatrane, a silanizing agent that forms smoother self-assembled monolayers than the commonly used 3-mercaptopropyltrimethoxysilane. Photopatterning …


Biomedical Applications And Syntheses Of Selected Anthraquinone Dyes, Richard Sirard Apr 2021

Biomedical Applications And Syntheses Of Selected Anthraquinone Dyes, Richard Sirard

Senior Honors Theses

Anthraquinones are aromatic organic compounds that have multiple applications in the biomedical field. Some anthraquinone-based compounds are used as fluorophores to contrast cell nuclei while others act as chemotherapeutic agents. However, there are not many fluorescent anthraquinone cell stains currently available. In this study, commercially available anthraquinone dyes, in addition to other dye families and compounds, were reviewed for their unique properties, advantages, and drawbacks. The development and characterization of three novel anthraquinone fluorophores revealed promising photophysical characteristics, like large Stokes shifts. One of the compounds, RBS3, was chosen for fixed and live cell staining and exhibited desirable biomedical properties. …


Beneficial Impacts Of Incorporating The Non-Natural Amino Acid Azulenyl-Alanine Into The Trp-Rich Antimicrobial Peptide Bucathl4b., Areetha R D'Souza, Matthew R Necelis, Alona Kulesha, Gregory A. Caputo, Olga V Makhlynets Mar 2021

Beneficial Impacts Of Incorporating The Non-Natural Amino Acid Azulenyl-Alanine Into The Trp-Rich Antimicrobial Peptide Bucathl4b., Areetha R D'Souza, Matthew R Necelis, Alona Kulesha, Gregory A. Caputo, Olga V Makhlynets

Faculty Scholarship for the College of Science & Mathematics

Antimicrobial peptides (AMPs) present a promising scaffold for the development of potent antimicrobial agents. Substitution of tryptophan by non-natural amino acid Azulenyl-Alanine (AzAla) would allow studying the mechanism of action of AMPs by using unique properties of this amino acid, such as ability to be excited separately from tryptophan in a multi-Trp AMPs and environmental insensitivity. In this work, we investigate the effect of Trp→AzAla substitution in antimicrobial peptide buCATHL4B (contains three Trp side chains). We found that antimicrobial and bactericidal activity of the original peptide was preserved, while cytocompatibility with human cells and proteolytic stability was improved. We envision …


Ecophysio-Optical Traits Of Semiarid Nebraska Grasslands Under Different Juniperus Virginiana And Pinus Ponderosa Canopy Covers, Anastasios Mazis, Julie A. Fowler, Jeremy Hiller, Yuzhen Zhou, Brian Wardlow, David A. Wedin, Tala Awada Jan 2021

Ecophysio-Optical Traits Of Semiarid Nebraska Grasslands Under Different Juniperus Virginiana And Pinus Ponderosa Canopy Covers, Anastasios Mazis, Julie A. Fowler, Jeremy Hiller, Yuzhen Zhou, Brian Wardlow, David A. Wedin, Tala Awada

School of Natural Resources: Faculty Publications

Despite conservation efforts in the U.S. Great Plains, woody species have continued to expand at an unprecedented rate, threatening key ecosystem services and resilience. Cross-scale monitoring of these grasslands is key to successful integrative management strategies. In this study we measured plant optical traits derived from hyperspectral proximal sensing techniques with a field spectrometer, coupled with field-based measurements, including fluorescence and chlorophyll content, to determine the impacts of Juniperus virginiana and Pinus ponderosa expansion on grasslands health in Nebraska Sandhills, and investigated the use of optical-based approaches as indicators of successful monitoring of grasslands. Our results showed that higher woody …


Synthesis And Self-Assembling Properties Of Peracetylated Β-1 Triazolyl Alkyl D Glucosides And D-Galactosides, Pooja Sharma, Anji Chen, Dan Wang, Guijun Wang Jan 2021

Synthesis And Self-Assembling Properties Of Peracetylated Β-1 Triazolyl Alkyl D Glucosides And D-Galactosides, Pooja Sharma, Anji Chen, Dan Wang, Guijun Wang

Chemistry & Biochemistry Faculty Publications

Carbohydrate-based low-molecular-weight gelators (LMWGs) are useful classes of compounds due to their numerous applications. Among sugar-based LMWGs, certain peracetylated sugar beta-triazole derivatives were found to be effective organogelators and showed interesting self-assembling properties. To further understand the structural influence towards molecular assemblies and obtain new functional materials with interesting properties, we designed and synthesized a library of tetraacetyl beta-1-triazolyl alkyl-D-glucosides and D-galactosides, in which a two or three carbon spacer is inserted between the anomeric position and the triazole moiety. A series of 16 glucose derivatives and 14 galactose derivatives were synthesized and analyzed. The self-assembling properties of these new …


Identification Of Compounds Causing Cellular Autofluorescence In Touch Samples, Elora C. Wall Jan 2021

Identification Of Compounds Causing Cellular Autofluorescence In Touch Samples, Elora C. Wall

Master of Science in Forensic Science Directed Research Projects

As DNA analysis has advanced and produced tests with higher sensitivities, attention has turned toward obtaining DNA profiles from cells left with fingermarks. Recent studies have reported that cells deposited within fingermarks can exhibit differences in autofluorescence emission in the ‘red’ region of the visible spectrum (e.g., between 650-670 nm), which can be used to differentiate contributor cell population and separate them before DNA profiles. Interestingly, this emission was not consistent to the individual day-to-day and likely not a genetically-controlled attribute of the contributor. Instead, this emission signature results from extended exposure of the skin to certain materials such as …


Leveraging Very-High Spatial Resolution Hyperspectral And Thermal Uav Imageries For Characterizing Diurnal Indicators Of Grapevine Physiology, Matthew Maimaitiyiming, Vasit Sagan, Paheding Sidike, Maitiniyazi Maimaitijiang, Allison J. Miller, Misha Kwasniewski Oct 2020

Leveraging Very-High Spatial Resolution Hyperspectral And Thermal Uav Imageries For Characterizing Diurnal Indicators Of Grapevine Physiology, Matthew Maimaitiyiming, Vasit Sagan, Paheding Sidike, Maitiniyazi Maimaitijiang, Allison J. Miller, Misha Kwasniewski

Michigan Tech Publications

Efficient and accurate methods to monitor crop physiological responses help growers better understand crop physiology and improve crop productivity. In recent years, developments in unmanned aerial vehicles (UAV) and sensor technology have enabled image acquisition at very-high spectral, spatial, and temporal resolutions. However, potential applications and limitations of very-high-resolution (VHR) hyperspectral and thermal UAV imaging for characterization of plant diurnal physiology remain largely unknown, due to issues related to shadow and canopy heterogeneity. In this study, we propose a canopy zone-weighting (CZW) method to leverage the potential of VHR (≤9 cm) hyperspectral and thermal UAV imageries in estimating physiological indicators, …


Near Simultaneous Laser Scanning Confocal And Atomic Force Microscopy (Conpokal) On Live Cells, Joree N. Sandin, Surya P. Aryal, Thomas E. Wilkop, Christopher I. Richards, Martha E. Grady Aug 2020

Near Simultaneous Laser Scanning Confocal And Atomic Force Microscopy (Conpokal) On Live Cells, Joree N. Sandin, Surya P. Aryal, Thomas E. Wilkop, Christopher I. Richards, Martha E. Grady

Physiology Faculty Publications

Techniques available for micro- and nano-scale mechanical characterization have exploded in the last few decades. From further development of the scanning and transmission electron microscope, to the invention of atomic force microscopy, and advances in fluorescent imaging, there have been substantial gains in technologies that enable the study of small materials. Conpokal is a portmanteau that combines confocal microscopy with atomic force microscopy (AFM), where a probe "pokes" the surface. Although each technique is extremely effective for the qualitative and/or quantitative image collection on their own, Conpokal provides the capability to test with blended fluorescence imaging and mechanical characterization. Designed …


Nanoscale Colocalization Of Fluorogenic Probes Reveals The Role Of Oxygen Vacancies In The Photocatalytic Activity Of Tungsten Oxide Nanowires, Meikun Shen, Tianben Ding, Steven T. Hartman, Fudong Wang, Christina Krucylak, Zheyu Wang, Che Tan, Bo Yin, Rohan Mishra, Matthew D. Lew, Bryce Sadtler Jan 2020

Nanoscale Colocalization Of Fluorogenic Probes Reveals The Role Of Oxygen Vacancies In The Photocatalytic Activity Of Tungsten Oxide Nanowires, Meikun Shen, Tianben Ding, Steven T. Hartman, Fudong Wang, Christina Krucylak, Zheyu Wang, Che Tan, Bo Yin, Rohan Mishra, Matthew D. Lew, Bryce Sadtler

Electrical & Systems Engineering Publications and Presentations

Defect engineering is a strategy that has been widely used to design active semiconductor photocatalysts. However, understanding the role of defects, such as oxygen vacancies, in controlling photocatalytic activity remains a challenge. Here, we report the use of chemically triggered fluorogenic probes to study the spatial distribution of active regions in individual tungsten oxide nanowires using super-resolution fluorescence microscopy. The nanowires show significant heterogeneity along their lengths for the photocatalytic generation of hydroxyl radicals. Through quantitative, coordinate-based colocalization of multiple probe molecules activated by the same nanowires, we demonstrate that the nanoscale regions most active for the photocatalytic generation of …


Spectroscopic Study On Pseudomonas Aeruginosa Biofilm In The Presence Of The Aptamer-Dna Scaffolded Silver Nanoclusters, Bidisha Sengupta, Prakash Adhikari, Esther Mallet, Ronald Havner, Prabhakar Pradhan Jan 2020

Spectroscopic Study On Pseudomonas Aeruginosa Biofilm In The Presence Of The Aptamer-Dna Scaffolded Silver Nanoclusters, Bidisha Sengupta, Prakash Adhikari, Esther Mallet, Ronald Havner, Prabhakar Pradhan

Faculty Publications

We report the effectiveness of silver nanocluster (Ag-NC) against the biofilm of Pseudomonas aeruginosa (PA). Two DNA aptamers specific for PA and part of their sequences were chosen as templates for growing the Ag-NC. While circular dichroism (CD) studies determined the presence of secondary structures, UV/Vis absorption, and fluorescence spectroscopic studies confirmed the formation of the fluorescent Ag-NC on the DNA templates. Furthermore, mesoscopic physics-based partial wave spectroscopy (PWS) was used to analyze the backscattered light signal that can detect the degree of nanoscale mass density/refractive index fluctuations to identify the biofilm formation, comparatively among the different aptamers with respect …


Laser Surface Cleaning As A Novel Approach For Genesis Solar Wind Collectors, Martina Schmeling, I. V. Veryovkin, C. E. Tripa Jan 2020

Laser Surface Cleaning As A Novel Approach For Genesis Solar Wind Collectors, Martina Schmeling, I. V. Veryovkin, C. E. Tripa

Chemistry: Faculty Publications and Other Works

A new surface cleaning method utilizing lasers has been evaluated for its suitability to Genesis solar wind collectors


Gold/Qds-Embedded-Ceria Nanoparticles: Optical Fluorescence Enhancement As A Quenching Sensor, Nader Shehata, Effat Samir, Ishac Kandas Jan 2020

Gold/Qds-Embedded-Ceria Nanoparticles: Optical Fluorescence Enhancement As A Quenching Sensor, Nader Shehata, Effat Samir, Ishac Kandas

Electrical & Computer Engineering Faculty Publications

This work focuses on improving the fluorescence intensity of cerium oxide (ceria) nanoparticles (NPs) through added plasmonic nanostructures. Ceria nanoparticles are fluorescent nanostructures which can emit visible fluorescence emissions under violet excitation. Here, we investigated different added plasmonic nanostructures, such as gold nanoparticles (Au NPs) and Cadmium sulfide/selenide quantum dots (CdS/CdSe QDs), to check the enhancement of fluorescence intensity emissions caused by ceria NPs. Different plasmonic resonances of both aforementioned nanostructures have been selected to develop optical coupling with both fluorescence excitation and emission wavelengths of ceria. In addition, different additions whether in-situ or post-synthesis have been investigated. We found …


Synthesis, Optical, And Thermal Properties Of 2,4,6-Tris(4-Substituted Phenyl)Pyrylium Tosylates And Triflimides, Pradip Kumar Bhowmik, Christina Inbok Lee, Jung Jae Koh, Haesook Han, Ahamed Jubair, Vladimir Kartazaev, Swapan Kumar Gayen Nov 2019

Synthesis, Optical, And Thermal Properties Of 2,4,6-Tris(4-Substituted Phenyl)Pyrylium Tosylates And Triflimides, Pradip Kumar Bhowmik, Christina Inbok Lee, Jung Jae Koh, Haesook Han, Ahamed Jubair, Vladimir Kartazaev, Swapan Kumar Gayen

Chemistry and Biochemistry Faculty Research

A group of five 2,4,6-tris(4-substituted phenyl)pyrylium tosylates were synthesized in one-pot reaction from para-substituted benzaldehyde and para-substituted acetophenones using tosic acid as a condensing agent. The tosylate salts were converted to the corresponding triflimide salts by metathesis reactions. Chemical structures, as well as optical spectroscopic and thermal properties of these salts were studied using pertinent experimental techniques. Trimethyl- and trihalo-substituted pyrylium salts emitted strong blue light with peaks in the 456 nm–479 nm range and trimethoxy-pyrylium salts emitted intense green light with maxima around 526 nm in acetonitrile solution. Quantum yields of the solutions were rather low, but the salts …


A Graphene Oxide-Based Fluorescence Assay For Sensitive Detection Of Dna Exonuclease Enzymatic Activity, Xiao Liu, Yingfen Wu, Xu Wu, Julia Zhao Sep 2019

A Graphene Oxide-Based Fluorescence Assay For Sensitive Detection Of Dna Exonuclease Enzymatic Activity, Xiao Liu, Yingfen Wu, Xu Wu, Julia Zhao

Chemistry Faculty Publications

The 3′–5′ exonuclease enzyme plays a dominant role in multiple pivotal physiological activities, such as DNA replication and repair processes. In this study, we designed a sensitive graphene oxide (GO)-based probe for the detection of exonuclease enzymatic activity. In the absence of Exo III, the strong π–π interaction between the fluorophore-tagged DNA and GO causes the efficient fluorescence quenching via a fluorescence resonance energy transfer (FRET). In contrast, in the presence of Exo III, the fluorophore-tagged 3′-hydroxyl termini of the DNA probe was digested by Exo III to set the fluorophore free from adsorption when GO was introduced, causing an …


Investigating Ions’ Effects On The Fluorescent Protein Dendra2, Benjamin Waterman Aug 2019

Investigating Ions’ Effects On The Fluorescent Protein Dendra2, Benjamin Waterman

Honors College

While superresolution microscopy has opened the doors to insights into biological phenomena we couldn’t have dreamed of in the last century, its methodology is naturally limited. We aim to push the envelope of its capabilities by testing the effect that Ca2+ and H+ ions have on the fluorescent protein Dendra2. Utilizing a newly designed perfusion chamber, we flow separate solutions containing Ca2+ and H+ ions into a cellular environment, in which the cells in question have been tagged with Dendra2. Utilizing the superresolution technique known as Spectral Fluorescence Photoactivation Localization Microscopy, we are able to obtain information about the emission …


Effects Of Ionic Liquid Alkyl Chain Length On Denaturation Of Myoglobin By Anionic, Cationic, And Zwitterionic Detergents, Joshua Y. Lee, Katherine M. Selfridge, Eric M. Kohn, Timothy Vaden, Gregory A. Caputo Jul 2019

Effects Of Ionic Liquid Alkyl Chain Length On Denaturation Of Myoglobin By Anionic, Cationic, And Zwitterionic Detergents, Joshua Y. Lee, Katherine M. Selfridge, Eric M. Kohn, Timothy Vaden, Gregory A. Caputo

Faculty Scholarship for the College of Science & Mathematics

The unique electrochemical properties of ionic liquids (ILs) have motivated their use as solvents for organic synthesis and green energy applications. More recently, their potential in pharmaceutical chemistry has prompted investigation into their effects on biomolecules. There is evidence that some ILs can destabilize proteins via a detergent-like manner; however, the mechanism still remains unknown. Our hypothesis is that if ILs are denaturing proteins via a detergent-like mechanism, detergent-mediated protein unfolding should be enhanced in the presence of ILs. The properties of myoglobin was examined in the presence of a zwitterionic (N,N-dimethyl-N-dodecylglycine betaine (Empigen BB®, EBB)), cationic (tetradecyltrimethylammonium bromide (TTAB)), …


Low Molecular Weight Fluorescent Probes (Lmfps) To Detect The Group 12 Metal Triad, Ashley D. Johnson, Rose M. Curtis, Karl J. Wallace Apr 2019

Low Molecular Weight Fluorescent Probes (Lmfps) To Detect The Group 12 Metal Triad, Ashley D. Johnson, Rose M. Curtis, Karl J. Wallace

Faculty Publications

Fluorescence sensing, of d-block elements such as Cu2+, Fe3+, Fe2+, Cd2+, Hg2+, and Zn2+ has significantly increased since the beginning of the 21st century. These particular metal ions play essential roles in biological, industrial, and environmental applications, therefore, there has been a drive to measure, detect, and remediate these metal ions. We have chosen to highlight the low molecular weight fluorescent probes (LMFPs) that undergo an optical response upon coordination with the group 12 triad (Zn2+, Cd2+, and Hg2+), as these metals have …


L-Tryptophan Adsorption Differentially Changes The Optical Behaviour Of Pseudo-Enantiomeric Cysteine-Functionalized Quantum Dots: Towards Chiral Fluorescent Biosensors, Faezeh Askari, Abbas Rahdar, John F. Trant Feb 2019

L-Tryptophan Adsorption Differentially Changes The Optical Behaviour Of Pseudo-Enantiomeric Cysteine-Functionalized Quantum Dots: Towards Chiral Fluorescent Biosensors, Faezeh Askari, Abbas Rahdar, John F. Trant

Chemistry and Biochemistry Publications

Water-soluble chiral graphene quantum dots (GQDs) with a strong blue emission were synthesized by covalently immobilizing l-cysteine or d-cysteine onto the GQDs. Either the amine or the thiol group of cysteine was used to make the bond through amide coupling or thiol-ene click chemistry respectively. The functionalized chiral GQDs were the characterized by FT-IR and UV–vis. The enantiomeric pairs exhibit equal but opposite bands in circular dichroism spectra suggesting that there is no difference in the efficacy of conjugation. The fluorescent response of these chiral GQDs when exposed to l-tryptophan was then studied. The fluorescence of the amide-conjugated GQDs was …


N-Methyl Mesoporphyrin Ix As A Highly Selective Light-Up Probe For G-Quadruplex Dna, Ariana Yett , '21, Linda Yingqi Lin , '20, Dana Beseiso , '21, Joanne Miao , '22, Liliya A. Yatsunyk Jan 2019

N-Methyl Mesoporphyrin Ix As A Highly Selective Light-Up Probe For G-Quadruplex Dna, Ariana Yett , '21, Linda Yingqi Lin , '20, Dana Beseiso , '21, Joanne Miao , '22, Liliya A. Yatsunyk

Chemistry & Biochemistry Faculty Works

N-methyl mesoporphyrin IX (NMM) is a water-soluble, non-symmetric porphyrin with excellent optical properties and unparalleled selectivity for G-quadruplex (GQ) DNA. G-quadruplexes are non-canonical DNA structures formed by guanine-rich sequences. They are implicated in genomic stability, longevity, and cancer. The ability of NMM to selectively recognize GQ structures makes it a valuable scaffold for designing novel GQ binders. In this review, we survey the literature describing the GQ-binding properties of NMM as well as its wide utility in chemistry and biology. We start with the discovery of the GQ-binding properties of NMM and the development of NMM-binding aptamers. We then discuss …