Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

The Evaluation And Implementation Of Magnetic Fields For Large Strain Uniaxial And Biaxial Cyclic Testing Of Magnetorheological Elastomers., Dave Gorman, Niall Murphy, Ray Ekins, Stephen Jerrams May 2016

The Evaluation And Implementation Of Magnetic Fields For Large Strain Uniaxial And Biaxial Cyclic Testing Of Magnetorheological Elastomers., Dave Gorman, Niall Murphy, Ray Ekins, Stephen Jerrams

Articles

Magnetorheological Elastomers (MREs) are “smart” materials whose physical properties are altered by the application of magnetic fields. In previous studies the properties of MREs have been evaluated under a variety of conditions, however little attention has been paid to the recording and reporting of the magnetic fields used in these tests [1]. Currently there is no standard accepted method for specifying the magnetic field applied during MRE testing. This study presents a detailed map of a magnetic field applied during MRE tests as well as providing the first comparative results for uniaxial and biaxial testing under high strain fatigue test …


Photocatalytic Properties Of G-C3n4–Tio2 Heterojunctions Under Uv And Visible Light Conditions, Rachel Fagan, Declan Mccormack, Steven J. Hinder, Suresh Pillai Apr 2016

Photocatalytic Properties Of G-C3n4–Tio2 Heterojunctions Under Uv And Visible Light Conditions, Rachel Fagan, Declan Mccormack, Steven J. Hinder, Suresh Pillai

Articles

Graphitic carbon nitride (g-C3N4) and titanium dioxide (TiO2) were chosen as a model system to investigate photocatalytic abilities of heterojunction system under UV and visible light conditions. The use of g-C3N4 has been shown to be effective in the reduction in recombination through the interaction between the two interfaces of TiO2 andg-C3N4. A simple method of preparing g-C3N4 through the pyrolysis of melamine was employed, which was then added to undoped TiO2 material to form the g-C3N4–TiO2 system. These materials were then fully characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET), and various spectroscopic techniques including Raman, X-ray photoelectron …


An Effective Method For The Preparation Of High Temperature Stable Anatase Tio2 Photocatalysts, Rachel Fagan, Declan Mccormack, Suresh Pillai, Damian Synnott Mar 2016

An Effective Method For The Preparation Of High Temperature Stable Anatase Tio2 Photocatalysts, Rachel Fagan, Declan Mccormack, Suresh Pillai, Damian Synnott

Articles

An efficient, rapid and straightforward method for the preparation of nitrogen and fluorine (N, F) codoped high temperature stable anatase using a microwave pre-treatment is reported. Using a single source, ammonium fluoride (NH4F) for both nitrogen and fluorine, effective doping of the precursor titanium isopropoxide (TTIP) was possible. These samples were characterised for their structural and optical properties using X-ray diffraction (XRD), Fourier transform IR (FTIR), Raman spectroscopy and UV-vis spectroscopy. In terms of the anatase to rutile transition enhancement using a novel microwave assisted technique, the sample prepared in a composition of 1:8 TiO2: NH …


Improved High Temperature Stability Of Anatase Tio2 Photocatalysts By N, F, P Co-Doping, Rachel Fagan, Declan Mccormack, Steven Hinder, Suresh Pillai Jan 2016

Improved High Temperature Stability Of Anatase Tio2 Photocatalysts By N, F, P Co-Doping, Rachel Fagan, Declan Mccormack, Steven Hinder, Suresh Pillai

Articles

Among the three commonly occurring phases (anatase, rutile, and brookite) of TiO2, the anatase form is reported to be the best photocatalyst due to the improved charge-carrier mobility and the greater number of surface hydroxyl groups. The anatase to rutile transition in titania photocatalysts usually occurs at a temperature between 500 °C to 700 °C. Development of a high temperature stable (above 1000 °C) anatase phase is important for various environmental applications (e.g. self-cleaning ceramic tiles, anti-microbial sanitary wares, etc.). In this study, the use of ammonium hexafluorophosphate as a single source dopant (method A) and urea, trifluoroacetic acid and …


Optimisation Of Anodic Oxidation Of Aluminium For Enhanced Adhesion And Corrosion Properties Of Sol-Gel Coatings., Michael Whelan, Tobin Edmond, John Cassidy, J. Colreavy, Brendan Duffy Jan 2016

Optimisation Of Anodic Oxidation Of Aluminium For Enhanced Adhesion And Corrosion Properties Of Sol-Gel Coatings., Michael Whelan, Tobin Edmond, John Cassidy, J. Colreavy, Brendan Duffy

Articles

The anodising process for clad and bare AA2024-T3 has been optimised as a surface preparation technique prior to sol-gel coating deposition. The combination of anodised aluminium surfaces and organically functionalised sol-gel chemistry have been investigated to impart elevated corrosion resistance and increased mechanical properties to the aluminium metal. A duplex anodising process has been developed to utilise the natural corrosion resistance properties of sulphuric acid anodising with the adhesion and hosting properties of phosphoric acid anodising. The novel anodising process and sol-gel sealed surfaces have been characterised using field emission scanning electron microscopy, energy dispersive x-ray spectroscopy. Performance of the …