Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Modeling Daily Power Demand In Southern Kentucky: A Single Household Approach, Craig M. Dickson Aug 2012

Modeling Daily Power Demand In Southern Kentucky: A Single Household Approach, Craig M. Dickson

Masters Theses & Specialist Projects

In this study, we use a nonparametric technique, locally weighted robust least squares regression (LOESS), to forecast a 24 hour demand profile at the household level and compare it to existing aggregate demand models discussed in literature. Of these aggregate demand models, a quadratic autoregressive model was selected to be used as a basis for comparison with the LOESS forecasts. It was our goal to automate the forecasting process by using the goodness of fit metric, AICCI, for smoothing parameter selection. The statistical workflow was executed using SAS and data was provided by the Glasgow Electric Plant Board of Barren …


Sharpening The Boundaries Of The Sequential Probability Ratio Test, Elizabeth Krantz May 2012

Sharpening The Boundaries Of The Sequential Probability Ratio Test, Elizabeth Krantz

Masters Theses & Specialist Projects

In this thesis, we present an introduction to Wald’s Sequential Probability Ratio Test (SPRT) for binary outcomes. Previous researchers have investigated ways to modify the stopping boundaries that reduce the expected sample size for the test. In this research, we investigate ways to further improve these boundaries. For a given maximum allowable sample size, we develop a method intended to generate all possible sets of boundaries. We then find the one set of boundaries that minimizes the maximum expected sample size while still preserving the nominal error rates. Once the satisfying boundaries have been created, we present the results of …


A Normal Truncated Skewed-Laplace Model In Stochastic Frontier Analysis, Junyi Wang May 2012

A Normal Truncated Skewed-Laplace Model In Stochastic Frontier Analysis, Junyi Wang

Masters Theses & Specialist Projects

Stochastic frontier analysis is an exciting method of economic production modeling that is relevant to hospitals, stock markets, manufacturing factories, and services. In this paper, we create a new model using the normal distribution and truncated skew-Laplace distribution, namely the normal-truncated skew-Laplace model. This is a generalized model of the normal-exponential case. Furthermore, we compute the true technical efficiency and estimated technical efficiency of the normal-truncated skewed-Laplace model. Also, we compare the technical efficiencies of normal-truncated skewed-Laplace model and normal-exponential model.