Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Evaluation Of Scalable Quantum And Classical Machine Learning For Particle Tracking Classification In Nuclear Physics, Polykarpos Thomadakis, Emmanuel Billias, Nikos Chrisochoides Jan 2023

Evaluation Of Scalable Quantum And Classical Machine Learning For Particle Tracking Classification In Nuclear Physics, Polykarpos Thomadakis, Emmanuel Billias, Nikos Chrisochoides

The Graduate School Posters

Future particle accelerators will exceed by far the current data size (1015) per experiment, and high- luminosity program(s) will produce more than 300 times as much data. Classical Machine Learning (ML) likely will benefit from new tools based on quantum computing. Particle track reconstruction is the most computationally intensive process in nuclear physics experiments. A combinatorial approach exhaustively tests track measurements (“hits”), represented as images, to identify those that form an actual particle trajectory, which is then used to reconstruct track parameters necessary for the physics experiment. Quantum Machine Learning (QML) could improve this process in multiple ways, …


Scalable Quantum Edge Detection Method For D-Nisq Imaging Simulations: Use Cases From Nuclear Physics And Medical Image Computing, Emmanuel Billias, Nikos Chrisochoides Jan 2023

Scalable Quantum Edge Detection Method For D-Nisq Imaging Simulations: Use Cases From Nuclear Physics And Medical Image Computing, Emmanuel Billias, Nikos Chrisochoides

The Graduate School Posters

Edge Detection is one of the computationally intensive modules in image analysis. It is used to find important landmarks by identifying a significant change (or “edge”) between pixels and voxels. We present a hybrid Quantum Edge Detection method by improving three aspects of an existing widely referenced implementation, which for our use cases generates incomprehensible results for the type and size of images we are required to process. Our contributions are in the pre- and post-processing (i.e., classical phase) and a quantum edge detection circuit: (1) we use space- filling curves to eliminate image artifacts introduced by the image decomposition, …


Hydrodynamics And Sediment Transport In The Tidally Influenced James River, Ollie Gilchrest, Rip Hale Jan 2023

Hydrodynamics And Sediment Transport In The Tidally Influenced James River, Ollie Gilchrest, Rip Hale

The Graduate School Posters

The tidally influenced James River is an important economic, ecologic, and cultural resource for VA residents. Tidal rivers have been historically understudied, however they are critical transition zones, the dynamics of which have implications for freshwater supply and sediment trapping. Globally, estimates suggest that >30% of fluvial sediment is trapped in the tidal zone, the location and dynamics of which are actively changing due to sea level rise and saltwater encroachment. In addition, analysis of historical water levels on the James River has shown a decrease in the tidal range since 1940. The present study combines >1-year’s worth of hydrographic …