Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

Assessing Wood Failure In Plywood By Deep Learning/Semantic Segmentation, Ramon Ferreira Oliveira Dec 2022

Assessing Wood Failure In Plywood By Deep Learning/Semantic Segmentation, Ramon Ferreira Oliveira

Theses and Dissertations

The current method for estimating wood failure is highly subjective. Various techniques have been proposed to improve the current protocol, but none have succeeded. This research aims to use deep learning/semantic segmentation using SegNet architecture to estimate wood failure in four types of three-ply plywood from mechanical shear strength specimens. We trained and tested our approach on custom and commercial plywood with bio-based and phenol-formaldehyde adhesives. Shear specimens were prepared and tested. Photographs of 255 shear bonded areas were taken. Forty photographs were used to solicit visual estimates from five human evaluators, and the remaining photographs were used to train …


Use Of Machine Learning And Natural Language Processing To Enhance Traffic Safety Analysis, Md Abu Sayed Dec 2022

Use Of Machine Learning And Natural Language Processing To Enhance Traffic Safety Analysis, Md Abu Sayed

Theses and Dissertations

Despite significant advances in vehicle technologies, safety data collection and analysis, and engineering advancements, tens of thousands of Americans die every year in motor vehicle crashes. Alarmingly, the trend of fatal and serious injury crashes appears to be heading in the wrong direction. In 2021, the actual rate of fatalities exceeded the predicted rate. This worrisome trend prompts and necessitates the development of advanced and holistic approaches to determining the causes of a crash (particularly fatal and major injuries). These approaches range from analyzing problems from multiple perspectives, utilizing available data sources, and employing the most suitable tools and technologies …


A Tool-Supported Metamodel For Program Bugfix Analysis In Empirical Software Engineering, Manal Zneit Aug 2022

A Tool-Supported Metamodel For Program Bugfix Analysis In Empirical Software Engineering, Manal Zneit

Theses and Dissertations

This thesis describes a software modeling approach aimed at addressing empirical studies in software engineering. We build a metamodel that provides an overview of the taxonomy of program bugfixes in deep learning programs. For modeling purposes, we present a prototype tool that is an implementation of the model-driven techniques presented.


Medical Image Segmentation With Deep Convolutional Neural Networks, Chuanbo Wang Aug 2022

Medical Image Segmentation With Deep Convolutional Neural Networks, Chuanbo Wang

Theses and Dissertations

Medical imaging is the technique and process of creating visual representations of the body of a patient for clinical analysis and medical intervention. Healthcare professionals rely heavily on medical images and image documentation for proper diagnosis and treatment. However, manual interpretation and analysis of medical images are time-consuming, and inaccurate when the interpreter is not well-trained. Fully automatic segmentation of the region of interest from medical images has been researched for years to enhance the efficiency and accuracy of understanding such images. With the advance of deep learning, various neural network models have gained great success in semantic segmentation and …


Image Restoration Under Adverse Illumination For Various Applications, Lan Fu Jul 2022

Image Restoration Under Adverse Illumination For Various Applications, Lan Fu

Theses and Dissertations

Many images are captured in sub-optimal environment, resulting in various kinds of degradations, such as noise, blur, and shadow. Adverse illumination is one of the most important factors resulting in image degradation with color and illumination distortion or even unidentified image content. Degradation caused by the adverse illumination makes the images suffer from worse visual quality, which might also lead to negative effects on high-level perception tasks, e.g., object detection.

Image restoration under adverse illumination is an effective way to remove such kind of degradations to obtain visual pleasing images. Existing state-of-the-art deep neural networks (DNNs) based image restoration …


Identifying And Discovering Curve Pattern Designs From Fragments Of Pottery, Jun Zhou Jul 2022

Identifying And Discovering Curve Pattern Designs From Fragments Of Pottery, Jun Zhou

Theses and Dissertations

The surface of many cultural heritage objects, such as pottery sherds found in the Southeastern Woodlands, were embellished with curve patterns. The original full designs of these patterns reflect rich historical and cultural information. However, in practice, most objects are fragmentary, making the complete underlying designs unknowable at the scale of the sherd fragment. The challenge to reconstruct and study complete designs is stymied because 1) most pottery sherds contain only a small portion of the underlying full design, 2) curve patterns detected on a sherd are usually incomplete and noisy, and 3) in the case of a stamping application, …


Towards Color-Based Two-Hand 3d Global Pose Estimation, Fanqing Lin Jun 2022

Towards Color-Based Two-Hand 3d Global Pose Estimation, Fanqing Lin

Theses and Dissertations

Pose estimation and tracking is essential for applications involving human controls. Specifically, as the primary operating tool for human activities, hand pose estimation plays a significant role in applications such as hand tracking, gesture recognition, human-computer interaction and VR/AR. As the field develops, there has been a trend to utilize deep learning to estimate the 2D/3D hand poses using color-based information without depth data. Within the depth-based as well as color-based approaches, the research community has primarily focused on single-hand scenarios in a localized/normalized coordinate system. Due to the fact that both hands are utilized in most applications, we propose …


Language Learning Using Models Of Intentionality In Repeated Games With Cheap Talk, Jonathan Berry Skaggs May 2022

Language Learning Using Models Of Intentionality In Repeated Games With Cheap Talk, Jonathan Berry Skaggs

Theses and Dissertations

Language is critical to establishing long-term cooperative relationships among intelligent agents (including people), particularly when the agents' preferences are in conflict. In such scenarios, an agent uses speech to coordinate and negotiate behavior with its partner(s). While recent work has shown that neural language modeling can produce effective speech agents, such algorithms typically only accept previous text as input. However, in relationships among intelligent agents, not all relevant context is expressed in conversation. Thus, in this paper, we propose and analyze an algorithm, called Llumi, that incorporates other forms of context to learn to speak in long-term relationships modeled as …


Physics-Guided Machine Learning In Ocean Acoustics Using Fisher Information, Michael Craig Mortenson Apr 2022

Physics-Guided Machine Learning In Ocean Acoustics Using Fisher Information, Michael Craig Mortenson

Theses and Dissertations

Waterborne acoustic signals carry information about the ocean environment. Ocean geoacoustic inversion is the task of estimating environmental parameters from received acoustic signals by matching the measured sound with the predictions of a physics-based model. A lower bound on the uncertainty associated with environmental parameter estimates, the Cramér-Rao bound, can be calculated from the Fisher information, which is dependent on derivatives of a physics-based model. Physics-based preconditioners circumvent the need for variable step sizes when computing numerical derivatives. This work explores the feasibility of using a neural network to perform geoacoustic inversion for environmental parameters and their associated uncertainties from …


Graph Neural Network And Phylogenetic Tree Construction, Gaofeng Pan Apr 2022

Graph Neural Network And Phylogenetic Tree Construction, Gaofeng Pan

Theses and Dissertations

Deep Learning had been widely used in computational biology research in past few years. A great amount of deep learning methods were proposed to solve bioinformatics problems, such as gene function prediction, protein interaction classification, drug effects analysis, and so on; most of these methods yield better solutions than traditional computing methods. However, few methods were proposed to solve problems encountered in evolutionary biology research. In this dissertation, two neural network learning methods are proposed to solve the problems of genome location prediction and median genome generation encountered in phylogenetic tree construction; the ability of neural network learning models on …


Smoothing Of Convolutional Neural Network Classifications, Glen R. Drumm Mar 2022

Smoothing Of Convolutional Neural Network Classifications, Glen R. Drumm

Theses and Dissertations

Smoothing convolutional neural networks is investigated. When intermittent and random false predictions happen, a technique of average smoothing is applied to smooth out the incorrect predictions. While a simple problem environment shows proof of concept, obstacles remain for applying such a technique to a more operationally complex problem.


Using Generative Adversarial Networks To Augment Unmanned Aerial Vehicle Image Classification Training Sets, Benjamin J. Mccloskey Mar 2022

Using Generative Adversarial Networks To Augment Unmanned Aerial Vehicle Image Classification Training Sets, Benjamin J. Mccloskey

Theses and Dissertations

A challenging task in computer vision is finding techniques to improve the object detection and classification capabilities of ML models used for processing images acquired by moving aerial platforms. This research explores if GAN augmented UAV training sets can increase the generalizability of a detection model trained on said data. To answer this question, the YOLOv4-Tiny Object Detection Model was trained with aerial image training sets depicting rural environments. The salient objects within the frames were recreated using various GAN architectures, placed back into the original frames, and the augmented frames appended to the original training sets. GAN augmentation on …


Generalized Robust Feature Selection, Bradford L. Lott Mar 2022

Generalized Robust Feature Selection, Bradford L. Lott

Theses and Dissertations

Feature selection may be summarized as identifying salient features to a given response. Understanding which features affect the response enables, in the future, only collecting consequential data; hence, the feature selection algorithm may lead to saving effort spent collecting data, storage resources, as well as computational resources for making predictions. We propose a generalized approach to select the salient features of data sets. Our approach may also be applied to unsupervised datasets to understand which data streams provide unique information. We contend our approach identifies salient features robust to the sub-sequent predictive model applied. The proposed algorithm considers all provided …