Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

Direct Digital Synthesis: A Flexible Architecture For Advanced Signals Research For Future Satellite Navigation Payloads, Pranav R. Patel Sep 2020

Direct Digital Synthesis: A Flexible Architecture For Advanced Signals Research For Future Satellite Navigation Payloads, Pranav R. Patel

Theses and Dissertations

In legacy Global Positioning System (GPS) Satellite Navigation (SatNav) payloads, the architecture does not provide the flexibility to adapt to changing circumstances and environments. GPS SatNav payloads have largely remained unchanged since the system became fully operational in April 1995. Since then, the use of GPS has become ubiquitous in our day-to-day lives. GPS availability is now a basic assumption for distributed infrastructure; it has become inextricably tied to our national power grids, cellular networks, and global financial systems. Emerging advancements of easy to use radio technologies, such as software-defined radios (SDRs), have greatly lowered the difficulty of discovery and …


Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing Sep 2020

Physics-Constrained Hyperspectral Data Exploitation Across Diverse Atmospheric Scenarios, Nicholas M. Westing

Theses and Dissertations

Hyperspectral target detection promises new operational advantages, with increasing instrument spectral resolution and robust material discrimination. Resolving surface materials requires a fast and accurate accounting of atmospheric effects to increase detection accuracy while minimizing false alarms. This dissertation investigates deep learning methods constrained by the processes governing radiative transfer to efficiently perform atmospheric compensation on data collected by long-wave infrared (LWIR) hyperspectral sensors. These compensation methods depend on generative modeling techniques and permutation invariant neural network architectures to predict LWIR spectral radiometric quantities. The compensation algorithms developed in this work were examined from the perspective of target detection performance using …


Design And Test Of An Autonomy Monitoring Service To Detect Divergent Behaviors On Unmanned Aerial Systems, Loay Y. Almannaei Jun 2020

Design And Test Of An Autonomy Monitoring Service To Detect Divergent Behaviors On Unmanned Aerial Systems, Loay Y. Almannaei

Theses and Dissertations

Operation of Unmanned Aerial Vehicles (UAV) support many critical missions in the United State Air Force (USAF). Monitoring abnormal behavior is one of many responsibilities of the operator during a mission. Some behaviors are hard to be detect by an operator, especially when flying one or more autonomous vehicles; as such, detections require a high level of attention and focus to flight parameters. In this research, a monitoring system and its algorithm are designed and tested for a target fixed-wing UAV. The Autonomy Monitoring Service (AMS) compares the real vehicle or simulated Vehicle with a similar simulated vehicle using Software …


Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee Mar 2020

Object Detection With Deep Learning To Accelerate Pose Estimation For Automated Aerial Refueling, Andrew T. Lee

Theses and Dissertations

Remotely piloted aircraft (RPAs) cannot currently refuel during flight because the latency between the pilot and the aircraft is too great to safely perform aerial refueling maneuvers. However, an AAR system removes this limitation by allowing the tanker to directly control the RP A. The tanker quickly finding the relative position and orientation (pose) of the approaching aircraft is the first step to create an AAR system. Previous work at AFIT demonstrates that stereo camera systems provide robust pose estimation capability. This thesis first extends that work by examining the effects of the cameras' resolution on the quality of pose …


Event-Based Visual-Inertial Odometry Using Smart Features, Zachary P. Friedel Mar 2020

Event-Based Visual-Inertial Odometry Using Smart Features, Zachary P. Friedel

Theses and Dissertations

Event-based cameras are a novel type of visual sensor that operate under a unique paradigm, providing asynchronous data on the log-level changes in light intensity for individual pixels. This hardware-level approach to change detection allows these cameras to achieve ultra-wide dynamic range and high temporal resolution. Furthermore, the advent of convolutional neural networks (CNNs) has led to state-of-the-art navigation solutions that now rival or even surpass human engineered algorithms. The advantages offered by event cameras and CNNs make them excellent tools for visual odometry (VO). This document presents the implementation of a CNN trained to detect and describe features within …


Comparison Of Visual Simultaneous Localization And Mapping Methods For Fixed-Wing Aircraft Using Slambench2, Patrick R. Latcham Mar 2020

Comparison Of Visual Simultaneous Localization And Mapping Methods For Fixed-Wing Aircraft Using Slambench2, Patrick R. Latcham

Theses and Dissertations

Visual Simultaneous Localization and Mapping (VSLAM) algorithms have evolved rapidly in the last few years, however there has been little research evaluating current algorithm's effectiveness and limitations when applied to tracking the position of a fixed-wing aerial vehicle. This research looks to evaluate current monocular VSLAM algorithms' performance on aerial vehicle datasets using the SLAMBench2 benchmarking suite. The algorithms tested are MonoSLAM, PTAM, OKVIS, LSDSLAM, ORB-SLAM2, and SVO, all of which are built into the SLAMBench2 software. The algorithms' performance is evaluated using simulated datasets generated in the AftrBurner Engine. The datasets were designed to test the quality of each …


Relational Database Design And Multi-Objective Database Queries For Position Navigation And Timing Data, Sean A. Mochocki Mar 2020

Relational Database Design And Multi-Objective Database Queries For Position Navigation And Timing Data, Sean A. Mochocki

Theses and Dissertations

Performing flight tests is a natural part of researching cutting edge sensors and filters for sensor integration. Unfortunately, tests are expensive, and typically take many months of planning. A sensible goal would be to make previously collected data readily available to researchers for future development. The Air Force Institute of Technology (AFIT) has hundreds of data logs potentially available to aid in facilitating further research in the area of navigation. A database would provide a common location where older and newer data sets are available. Such a database must be able to store the sensor data, metadata about the sensors, …


Maximizing Accuracy Through Stereo Vision Camera Positioning For Automated Aerial Refueling, Kirill A. Sarantsev Mar 2020

Maximizing Accuracy Through Stereo Vision Camera Positioning For Automated Aerial Refueling, Kirill A. Sarantsev

Theses and Dissertations

Aerial refueling is a key component of the U.S. Air Force strategic arsenal. When two aircraft interact in an aerial refueling operation, the accuracy of relative navigation estimates are critical for the safety, accuracy and success of the mission. Automated Aerial Refueling (AAR) looks to improve the refueling process by creating a more effective system and allowing for Unmanned Aerial Vehicle(s) (UAV) support. This paper considers a cooperative aerial refueling scenario where stereo cameras are used on the tanker to direct a \boom" (a large, long structure through which the fuel will ow) into a port on the receiver aircraft. …


Use Of Lidar In Automated Aerial Refueling To Improve Stereo Vision Systems, Michael R. Crowl Mar 2020

Use Of Lidar In Automated Aerial Refueling To Improve Stereo Vision Systems, Michael R. Crowl

Theses and Dissertations

The United States Air Force (USAF) executes five Core Missions, four of which depend on increased aircraft range. To better achieve global strike and reconnaissance, unmanned aerial vehicles (UAVs) require aerial refueling for extended missions. However, current aerial refueling capabilities are limited to manned aircraft due to technical difficulties to refuel UAVs mid-flight. The latency between a UAV operator and the UAV is too large to adequately respond for such an operation. To overcome this limitation, the USAF wants to create a capability to guide the refueling boom into the refueling receptacle. This research explores the use of light detection …


Pedestrian Navigation Using Artificial Neural Networks And Classical Filtering Techniques, David J. Ellis Mar 2020

Pedestrian Navigation Using Artificial Neural Networks And Classical Filtering Techniques, David J. Ellis

Theses and Dissertations

The objective of this thesis is to explore the improvements achieved through using classical filtering methods with Artificial Neural Network (ANN) for pedestrian navigation techniques. ANN have been improving dramatically in their ability to approximate various functions. These neural network solutions have been able to surpass many classical navigation techniques. However, research using ANN to solve problems appears to be solely focused on the ability of neural networks alone. The combination of ANN with classical filtering methods has the potential to bring beneficial aspects of both techniques to increase accuracy in many different applications. Pedestrian navigation is used as a …


Determining Virtual Practicality From Physical Stereo Vision Images And Gps, Bradley S. French Mar 2020

Determining Virtual Practicality From Physical Stereo Vision Images And Gps, Bradley S. French

Theses and Dissertations

Current research efforts for Automated Aerial Refueling (AAR) at The Air Force Institute of Technology (AFIT) utilize Stereo Computer Vision to compute a relative pose between a tanker and receiver aircraft. Due to costs, time, and availability, it can be onerous to test these algorithms using actual Air Force (AF) aircraft. Our solution to this problem consists of using a 3D Graphics Engine to simulate AAR endeavors. However, the question then arises, “Does the virtual world accurately represent the physical world?” This can be explored by comparing a set of truth data to a similar set of virtual data. First, …


The Impact Of Changing The Size Of Aircraft Radar Displays On Visual Search In The Cockpit, Justin R. Marsh Mar 2020

The Impact Of Changing The Size Of Aircraft Radar Displays On Visual Search In The Cockpit, Justin R. Marsh

Theses and Dissertations

Advances in sensor technology have enabled our fighter aircraft to find, fix, track, target, engage (F2T2E) at greater distances, providing the operator with more data within the battlefield. Modern aircraft are designed with larger displays while our legacy aircraft are being retrofitted with larger cockpit displays to enable display of the increased data. While this modification has been shown to enable improvements in human performance of many cockpit tasks, this effect is often not measured nor fully understood at a more generalizable level. This research outlines an approach to comparing human performance across two display sizes in future F-16 cockpits. …