Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Synthesis And Determination Of The Local Structure And Phase Evolution Of Unique Boehmite-Derived Mesoporous Doped Aluminas, Ying Zhang Aug 2018

Synthesis And Determination Of The Local Structure And Phase Evolution Of Unique Boehmite-Derived Mesoporous Doped Aluminas, Ying Zhang

Theses and Dissertations

Mesoporous alumina (Al2O3) in the gamma (γ) phase is widely used as a support in catalytic applications because of its high surface area, large pore volume, acid-base characteristics, and thermal stability. To improve the thermal stability of gamma alumina, dopants such as lanthanum, magnesium, zirconia, and silica are often introduced. Current laboratory-based methods for synthesizing gamma alumina generally involve 10-15 steps and/or use toxic, expensive surfactants and solvents. Industrial methods, while simpler, lack control of pore properties and surface chemistry. In contrast, we have developed an innovative solvent deficient, one-step method that is able to synthesize a wide range of …


Preparation Of Polymeric Materials From Bio-Renewable Sources, Jason Douglas Smith Feb 2018

Preparation Of Polymeric Materials From Bio-Renewable Sources, Jason Douglas Smith

Theses and Dissertations

The focus of this project was to develop methodologies for the preparation of novel polymeric materials from bio-renewable sources. In order to complete this task we needed (a) unfettered access to bio-based materials and ways to convert them to value needed chemicals, as well as, (b) reaction protocols that would allow greater diversity during the synthesis of polymeric compounds so as to affect the properties of these materials.

Our research group has a background in converting plant-based materials like cellulose into value added chemicals employing catalytic reactions. The polymerization of these monomers was then conducted utilizing the Baylis-Hillman reaction. The …


Design, Synthesis, Characterization, And Applications Of Matrix Free Polymer Nanocomposites, Yucheng Huang Jan 2018

Design, Synthesis, Characterization, And Applications Of Matrix Free Polymer Nanocomposites, Yucheng Huang

Theses and Dissertations

This dissertation focuses on the design, synthesis, characterization and application of matrix free polymer nanocomposites. Reversible addition-fragmentation chain transfer (RAFT) polymerization was used to synthesize block copolymers and polymer grafted silica nanoparticles with precise control over architectures.

In the first chapter, thermoplastic elastomer (TPE) grafted nanoparticles were prepared by grafting block copolymer poly(styrene-block-(n-butyl acrylate)) onto silica nanoparticles (NPs) (~15nm) via surface initiated RAFT polymerization. The effects of polymer chain length and graft density on the mechanical properties were investigated using films made solely from the grafted NPs. The ultimate tensile stress and elastic modulus increased with the increase of PS …


Synthesis And Characterization Of Polydiene-Grafted Nanoparticles, Zaid Mohammed Abbas Alajeeli Jan 2018

Synthesis And Characterization Of Polydiene-Grafted Nanoparticles, Zaid Mohammed Abbas Alajeeli

Theses and Dissertations

This dissertation presents the design, synthesis, and characterization of polydiene grafted nanoparticles as a way to tailor nanocomposite interfaces and properties via interface design. The polymerization of dienes was done via reversible addition fragmentation chain transfer (RAFT) polymerization. The grafting of polymer chains on the surface of silica nanoparticles can be controlled through the molecular design of the RAFT agents attached to the nanoparticles surface. The properties of the nanocomposites largely depended on the interface between the particles and the polymer matrix. In the first part of this work, the polymerization of diene monomers was done on 15 nm diameter …


Synthesis Of Small-Molecule Fluorescent Probe And Polymers For Bioapplication: Bioimaging And Enzyme Stabilization, Yanmei Xu Jan 2018

Synthesis Of Small-Molecule Fluorescent Probe And Polymers For Bioapplication: Bioimaging And Enzyme Stabilization, Yanmei Xu

Theses and Dissertations

In chapter one, we designed, synthesized and characterized two cysteine sensors CCPAP and CCPAN, with improved water solubility, cell penetration ability, and potential targeting selectivity. Two types of positive charged groups, i.e. triphenylphosphonium and pyridinium were introduced respectively to the frame structure CCP by coupling carboxylic acid with amine to improve the cell permeability and cysteine selectivity. ESI-MS, NMR and IR were employed to characterize the molecular structures of the two novel probes. These probes have better water solubility than the parent molecule DCP, and better cell penetration capability than CEP, which could further distinguish the cysteine concentration differences in …


Synthesis And Reactivity Of Carborane Backbone Pincer Complexes, Bennett J. Eleazer Jan 2018

Synthesis And Reactivity Of Carborane Backbone Pincer Complexes, Bennett J. Eleazer

Theses and Dissertations

In organometallic chemistry, boron-centered ligand systems represent a powerful synthetic strategy for the promotion of a variety of catalytic transformations. These ligands offer a versatile array of bonding motifs, which can function as borane, boratrane, boryl, borate, or borylenes type ligands, and are likely the strongest σ-donors in the anionic series of ligands based on boron, carbon, nitrogen, and oxygen. Carboranes, which are icosahedral boron clusters of the type C2B10H12, offer unique potential as metal ligands, such as their bonding to exohedral metal centers being dominated by two-center-two-electron σ-bond interactions, their three-dimensional cluster structure providing considerable steric shielding to a …