Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Operations-Focused Optimized Theater Weather Sensing Strategies Using Preemptive Binary Integer Programming, Andrew J. Geyer Mar 2009

Operations-Focused Optimized Theater Weather Sensing Strategies Using Preemptive Binary Integer Programming, Andrew J. Geyer

Theses and Dissertations

This thesis describes a method that optimally deploys weather sensors of all types in a battlefield environment. Gridded climatology models are used to determine an estimate for the weighted frequency of occurrence of operationally significant inclement weather events. That data is used to formulate a series of preemptive Binary Integer Linear Programs that maximize detection of expected operationally significant inclement weather occurrences within the constraints of feasibility of sensor deployment, sensor operational lifespan and the sensor’s ability to detect the operationally significant inclement weather elements. The preemptive Binary Integer Linear Programs are combined into a single objective function that maintains …


Assessment Of Weather Sensitivities And Air Force Weather (Afw) Support To Tactical Lasers In The Lower Troposphere, Francesco J. Echeverria Mar 2009

Assessment Of Weather Sensitivities And Air Force Weather (Afw) Support To Tactical Lasers In The Lower Troposphere, Francesco J. Echeverria

Theses and Dissertations

ATL scientists need to develop a full understanding of the interaction effects between a high-energy laser beam and the atmosphere through which it propagates. Achieving this understanding is important for many reasons. In particular, the high cost of DE weapons systems makes each propagation event expensive. Having an understanding of the atmosphere in which a high-energy laser propagates will increase efficiency and effectiveness of the ATL weapon system, which in turn will decrease cost of operation. A tool that allows for the ATL war-fighter to determine the atmospheric effects on laser propagation currently does not exist. This study creates a …


A Computational Tool For Evaluating Thz Imaging Performance In Brownout Conditions At Land Sites Throughout The World, Seth L. Marek Mar 2009

A Computational Tool For Evaluating Thz Imaging Performance In Brownout Conditions At Land Sites Throughout The World, Seth L. Marek

Theses and Dissertations

This study quantifies terahertz (THz) or sub-millimeter imaging performance during simulated rotary-wing brownout or whiteout environments based on geographic location and recent/current atmospheric weather conditions. The atmospheric conditions are defined through the Air Force Institute of Technology Center for Directed Energy (AFIT/CDE) Laser Environmental Effects Definition and Reference or LEEDR model. This model enables the creation of vertical profiles of temperature, pressure, water vapor content, optical turbulence, and atmospheric particulates and hydrometeors as they relate to line-by-line layer extinction coefficient magnitude at wavelengths from the UV to the RF. Optical properties and realistic particle size distributions for the brownout and …


Demonstration And Verification Of A Broad Spectrum Anomalous Dispersion Effects Tool For Index Of Refraction And Optical Turbulence Calculations, J. Jean Cohen Mar 2009

Demonstration And Verification Of A Broad Spectrum Anomalous Dispersion Effects Tool For Index Of Refraction And Optical Turbulence Calculations, J. Jean Cohen

Theses and Dissertations

An atmospheric optical turbulence strength model with a broad wavelength range of 355nm (ultraviolet) to 8.6m (radio frequencies) has been created at AFIT and implemented into the High Energy Laser End-to-End Operational Simulation tool (HELEEOS). This modeling and simulation tool is a first principles atmospheric propagation and characterization model. Within HELEEOS lies the High-Resolution Transmission Molecular Absorption (HITRAN) database, containing 1,734,469 spectral lines for 37 different molecules as of version 12.0 (2004). HITRAN affords HELEEOS incredible accuracy for electromagnetic (EM) propagation prediction. A full understanding of optical turbulence is needed to successfully predict EM radiation propagation, particularly within the application …