Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Part I: Development Of Small-Molecule-Based Probes For The Vitamin D Receptor; Part Ii: Development Of A Scalable Manufacturing Process For Orcein Dye, Tania Roseann Mutchie May 2021

Part I: Development Of Small-Molecule-Based Probes For The Vitamin D Receptor; Part Ii: Development Of A Scalable Manufacturing Process For Orcein Dye, Tania Roseann Mutchie

Theses and Dissertations

PART I:The vitamin D receptor (VDR) is a ligand-dependent transcription factor and member of the nuclear hormone receptor superfamily. VDR is expressed in the epithelia of endocrine organs, digestive system, bronchi, kidneys, and thymus, as well as being present in leukocytes and bone cells. Cell proliferation, cell differentiation, and immunomodulation, along with calcium and phosphate homeostasis, are all processes regulated by the receptor. Within the cell, VDR can be membrane-bound or located in the nucleus. Nuclear localization of VDR transpires following the binding of vitamin D metabolites, the most active of which is 1α,25-dihydroxyvitamin D3 (calcitriol). Within the nucleus, interactions …


Investigation Of G Protein-Coupled Receptor Quaternary Structure Through Fluorescence Micro-Spectroscopy And Theoretical Modeling: Interdependence Between Receptor-Receptor And Receptor-Ligand Interactions, Joel David Paprocki May 2021

Investigation Of G Protein-Coupled Receptor Quaternary Structure Through Fluorescence Micro-Spectroscopy And Theoretical Modeling: Interdependence Between Receptor-Receptor And Receptor-Ligand Interactions, Joel David Paprocki

Theses and Dissertations

Proteins are of high interest in biophysics research due to the important roles they play within cells, such as sensing of chemical (ions and small molecules) and physical (e.g., light) stimuli, providing structure, transporting ions/molecules, signaling, and intercellular communication. The studies described in this dissertation focus on a particular type of membrane proteins known as G protein-coupled receptors (GPCR), which play a key role in cellular response to external stimuli. We used the sterile 2 α-factor mating pheromone receptor (Ste2), a prototypical class D GPCR present within Saccharomyces cerevisiae (baker’s yeast). Ste2 is responsible for initiating the second messenger signal …


Effects Of Electrical Stimulation On Glioma Cells In Vitro With Implications For Treating Chronic Pain: Development Of A Model System, David C. Platt Apr 2019

Effects Of Electrical Stimulation On Glioma Cells In Vitro With Implications For Treating Chronic Pain: Development Of A Model System, David C. Platt

Theses and Dissertations

Glial cells comprise over 70% of the central nervous system cells and exhibit diverse functions including regulation of synaptic transmission, neuron protection/repair, maintenance of neuronal metabolism, and are implicated in the development of persistent neuropathic pain. In addition, a perturbation in the concentration of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) has likewise been associated with the development of a chronic pain state. This perturbation in ROS/RNS creates an environment of oxidative stress. However, the mechanism by which the pain signal transmission is modulated, and the roles ROS play in the perpetuation of the pain state are …


Zinc Chemical Biology: The Pursuit Of The Intracellular Targets Of Zinquin, Andrew Nowakowski Aug 2013

Zinc Chemical Biology: The Pursuit Of The Intracellular Targets Of Zinquin, Andrew Nowakowski

Theses and Dissertations

Fluorescent sensors have been a main microscopic tools used to understand Zn2+ physiology on a cellular level. The use of the fluorescent Zn2+ sensor Zinquin (ZQ) and its analogues have revealed that transient Zn2+ is a chief component in a variety of biochemical pathways. Yet, little work has been performed to validate the exact targets of Zinquin in a cellular environment. The goals of this investigation are to determine the types of Zinquin reactions that take place in the cell as well as the identities of its cellular targets.

It has been hypothesized that Zinquin reacts with free Zn2+ within …


Characterization Of The Desorption Electrospray Ionization Mechanism Using Microscopic Imaging Of The Sample Surface, Michael Craig Wood Aug 2011

Characterization Of The Desorption Electrospray Ionization Mechanism Using Microscopic Imaging Of The Sample Surface, Michael Craig Wood

Theses and Dissertations

Desorption electrospray ionization (DESI) is an ambient ionization technique for mass spectrometry. This solvent based desorption ion source has wide applicability in surface analysis with minimal sample preparation. Interest in improving detection limits, broadening applications, and increasing the spatial resolution for chemical imaging has led to studies of the DESI mechanism. An inverted microscope has been used to image interactions between the DESI spray and test analytes on a glass surface. Microscopic images recorded with millisecond time resolution have provided important insights into the processes governing analyte transport and desorption. These insights are the basis of a rivulet-based model for …


Detection Of Proteins By Two-Photon Excitation Of Native Fluorescence, Li Li Aug 2006

Detection Of Proteins By Two-Photon Excitation Of Native Fluorescence, Li Li

Theses and Dissertations

Proteins are of primary importance to the structure and function of all living cells. Study of proteins relies on the ability to separate a complex mixture so that individual proteins can be more easily processed by other techniques. Since protein samples often exist at low concentration in a small volume, the trend in chemical analysis is toward micro total analysis systems (µTAS) or lab-on-a-chip devices. Among µTAS separation methods, the relatively new electric field gradient focusing (EFGF) technique has shown potential. It focuses and separates analytes based on their electrophoretic migration in an opposing hydrodynamic flow. The detection principles that …