Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Publications

LIGO

Astrophysics and Astronomy

2017

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Full Band All-Sky Search For Periodic Gravitational Waves In The O1 Ligo Data, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al. Sep 2017

Full Band All-Sky Search For Periodic Gravitational Waves In The O1 Ligo Data, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, E. M. Gretarsson, B. Hughey, M. Muratore, J. W. W. Pratt, S. G. Schwalbe, K. Staats, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

We report on an all-sky search for periodic gravitational waves in the frequency band 20–475 Hz and with a frequency time derivative in the range of [−1.0,+0.1]×10−8  Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO’s first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h0 are ∼4×10−25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest …


Gw170104: Observation Of A 50-Solar-Mass Binary Black Hole Coalescence At Redshift 0.2, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, B. Hughey, J. W. W. Pratt, E. Schmidt, G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, Et Al. Jun 2017

Gw170104: Observation Of A 50-Solar-Mass Binary Black Hole Coalescence At Redshift 0.2, B. P. Abbott, K. Aultoneal, S. Gaudio, K. Gill, B. Hughey, J. W. W. Pratt, E. Schmidt, G. Schwalbe, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2 þ8.4 −6.0M⊙ and 19.4 þ5.3 −5.9M⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, …


The Basic Physics Of The Binary Black Hole Merger Gw150914, B. P. Abbott, K. Gill, B. Hughey, J. Pratt, M. J. Szczepańczyk, M. Zanolin, Et Al. Jan 2017

The Basic Physics Of The Binary Black Hole Merger Gw150914, B. P. Abbott, K. Gill, B. Hughey, J. Pratt, M. J. Szczepańczyk, M. Zanolin, Et Al.

Publications

The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere, in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes …