Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Publications

2010

Protein stability

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Computational Analysis Of Missense Mutations Causing Snyder-Robinson Syndrome, Zhe Zhang, Shaolei Teng, Liangjiang Wang, Charles E. Schwartz, Emil Alexov Sep 2010

Computational Analysis Of Missense Mutations Causing Snyder-Robinson Syndrome, Zhe Zhang, Shaolei Teng, Liangjiang Wang, Charles E. Schwartz, Emil Alexov

Publications

The Snyder-Robinson syndrome is caused by missense mutations in the spermine sythase gene that encodes a protein (SMS) of 529 amino acids. Here we investigate, in silico, the molecular effect of three missense mutations, c.267G>A (p.G56S), c.496T>G (p.V132G), and c.550T>C (p.I150T) in SMS that were clinically identified to cause the disease. Single-point energy calculations, molecular dynamics simulations, and pKa calculations revealed the effects of these mutations on SMS's stability, flexibility, and interactions. It was predicted that the catalytic residue, Asp276, should be protonated prior binding the substrates. The pKa calculations indicated the p.I150T mutation causes pKa changes …


Structural Assessment Of The Effects Of Amino Acid Substitutions On Protein Stability And Protein-Protein Interaction, Shaolei Teng, Liangjiang Wang, Anand K. Srivastava, Charles E. Schwartz, Emil Alexov Mar 2010

Structural Assessment Of The Effects Of Amino Acid Substitutions On Protein Stability And Protein-Protein Interaction, Shaolei Teng, Liangjiang Wang, Anand K. Srivastava, Charles E. Schwartz, Emil Alexov

Publications

A structure-based approach is described for predicting the effects of amino acid substitutions on protein function. Structures were predicted using a homology modelling method. Folding and binding energy differences between wild-type and mutant structures were computed to quantitatively assess the effects of amino acid substitutions on protein stability and protein–protein interaction, respectively. We demonstrated that pathogenic mutations at the interaction interface could affect binding energy and destabilise protein complex, whereas mutations at the non-interface might reduce folding energy and destabilise monomer structure. The results suggest that the structure-based analysis can provide useful information for understanding the molecular mechanisms of diseases.