Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Physical Sciences and Mathematics

The Effect Of Advection On The Three Dimensional Distribution Of Turbulent Kinetic Energy And Its Generation In Idealized Tropical Cyclone Simulations, Joshua B. Wadler, David S. Nolan, Jun A. Zhang, Lynn K. Shay, Joseph B. Olsen, Joseph J. Cione May 2023

The Effect Of Advection On The Three Dimensional Distribution Of Turbulent Kinetic Energy And Its Generation In Idealized Tropical Cyclone Simulations, Joshua B. Wadler, David S. Nolan, Jun A. Zhang, Lynn K. Shay, Joseph B. Olsen, Joseph J. Cione

Publications

The distribution of turbulent kinetic energy (TKE) and its budget terms is estimated in simulated tropical cyclones (TCs) of various intensities. Each simulated TC is subject to storm motion, wind shear, and oceanic coupling. Different storm intensities are achieved through different ocean profiles in the model initialization. For each oceanic profile, the atmospheric simulations are performed with and without TKE advection. In all simulations, the TKE is maximized at low levels (i.e., below 1 km) and ∼0.5 km radially inward of the azimuthal-mean radius of maximum wind speed at 1-km height. As in a previous study, the axisymmetric TKE decreases …


Analysis Of Energy Transfer Among Background Flow, Gravity Waves And Turbulence In The Mesopause Region In The Process Of Gravity Wave Breaking From A High-Resolution Atmospheric Model, Fan Yang, Alan Z. Liu, Christopher J. Heale, Jonathan B. Snively, Wenjun Dong, Thomas Lund Mar 2023

Analysis Of Energy Transfer Among Background Flow, Gravity Waves And Turbulence In The Mesopause Region In The Process Of Gravity Wave Breaking From A High-Resolution Atmospheric Model, Fan Yang, Alan Z. Liu, Christopher J. Heale, Jonathan B. Snively, Wenjun Dong, Thomas Lund

Publications

We conducted an analysis of the process of GW breaking from an energy perspective using the output from a high-resolution compressible atmospheric model. The investigation focused on the energy conversion and transfer that occur during the GW breaking. The total change in kinetic energy and the amount of energy converted to internal energy and potential energy within a selected region were calculated. Prior to GW breaking, part of the potential energy is converted into kinetic energy, most of which is transported out of the chosen region. After the GW breaks and turbulence develops, part of the potential energy is converted …


Numerical Modeling Of The Propagation Of Infrasonic Acoustic Waves Through The Turbulent Field Generated By The Breaking Of Mountain Gravity Waves, Michael P. Hickey, Jonathan Snively, C Bailly, J. L. Garrison Apr 2019

Numerical Modeling Of The Propagation Of Infrasonic Acoustic Waves Through The Turbulent Field Generated By The Breaking Of Mountain Gravity Waves, Michael P. Hickey, Jonathan Snively, C Bailly, J. L. Garrison

Publications

The nonlinear propagation of low-frequency acoustic waves through the turbulent fluctuations induced by breaking mountain gravity waves is investigated via 2-D numerical simulations of the Navier-Stokes equations, to understand the effects of atmospheric dynamics on ground-based infrasound measurements. Emphasis is placed on acoustic signals of frequency around 0.1 Hz, traveling through tens-of-kilometers-scale gravity waves and subkilometer-scale turbulence. The sensitivity of the infrasonic phases to small-scale fluctuations is found to depend on the altitudes through which they are refracted toward the Earth. For the considered cases, the dynamics in the stratosphere impact the refracting acoustic waves to a greater extent than …


Vortex: A New Rocketexperiment To Studymesoscale Dynamics At The Turbopause, Gerald A. Lehmacher, Jonathan B. Snively, Aroh Barjatya, Miguel F. Larsen, Michael J. Taylor, Franz-Josef Lübken, Jorge L. Chau Jan 2019

Vortex: A New Rocketexperiment To Studymesoscale Dynamics At The Turbopause, Gerald A. Lehmacher, Jonathan B. Snively, Aroh Barjatya, Miguel F. Larsen, Michael J. Taylor, Franz-Josef Lübken, Jorge L. Chau

Publications

The goal of this new investigation is to better understand gravity waves and their interactions as they propagate from the mesosphere into the lower thermosphere, to characterize the mesoscale wind field, and to identify regions of divergence, vorticity, and stratified turbulence. The Vorticity Experiment (VortEx) will comprise two salvoes of each two sounding rockets scheduled to be launched from Andøya Space Center, Norway in February 2022. The rockets will observe horizontally spaced wind profiles, neutral density and temperature profiles, and plasma densities. Additional information about the background conditions and mesoscale dynamics will be obtained by lidars, meteor radars and a …


Observations Of Reduced Turbulence And Wave Activity In The Arctic Middle Atmosphere Following The January 2015 Sudden Stratospheric Warming, Colin C. Triplett, Aroh Barjatya, Jintai Li, Richard L. Collins, Gerald A. Lehmacher, David C. Fritts, Boris Strelnikov, Franz-Josef Lübken, Brentha Thurairajah, V. Lynn Harvey, Donald L. Hampton, Roger H. Varney Nov 2018

Observations Of Reduced Turbulence And Wave Activity In The Arctic Middle Atmosphere Following The January 2015 Sudden Stratospheric Warming, Colin C. Triplett, Aroh Barjatya, Jintai Li, Richard L. Collins, Gerald A. Lehmacher, David C. Fritts, Boris Strelnikov, Franz-Josef Lübken, Brentha Thurairajah, V. Lynn Harvey, Donald L. Hampton, Roger H. Varney

Publications

Measurements of turbulence and waves were made as part of the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX) on the night of 25–26 January 2015 at Poker Flat Research Range, Chatanika, Alaska (65°N, 147°W). Rocket-borne ionization gauge measurements revealed turbulence in the 70- to 88-km altitude region with energy dissipation rates between 0.1 and 24 mW/kg with an average value of 2.6 mW/kg. The eddy diffusion coefficient varied between 0.3 and 134 m2/s with an average value of 10 m2/s. Turbulence was detected around mesospheric inversion layers (MILs) in both the topside and bottomside of the MILs. These …


Local Time Dependence Of Turbulent Magnetic Fields In Saturn's Magnetodisc, V. Kaminker, P. A. Delamere, C. S. Ng, T. Dennis, A. Otto, X. Ma Apr 2017

Local Time Dependence Of Turbulent Magnetic Fields In Saturn's Magnetodisc, V. Kaminker, P. A. Delamere, C. S. Ng, T. Dennis, A. Otto, X. Ma

Publications

Net plasma transport in magnetodiscs around giant planets is outward. Observations of plasma temperature have shown that the expanding plasma is heating nonadiabatically during this process. Turbulence has been suggested as a source of heating. However, the mechanism and distribution of magnetic fluctuations in giant magnetospheres are poorly understood. In this study we attempt to quantify the radial and local time dependence of fluctuating magnetic field signatures that are suggestive of turbulence, quantifying the fluctuations in terms of a plasma heating rate density. In addition, the inferred heating rate density is correlated with magnetic field configurations that include azimuthal bend …


Current Sheet Flapping Motions In The Tailwind Flow Of Magnetic Reconnection, Mingyu Wu, Quanming Lu, Martin Volwerk, Zoltán Vörös, Xuanye Ma, Shui Wang Aug 2016

Current Sheet Flapping Motions In The Tailwind Flow Of Magnetic Reconnection, Mingyu Wu, Quanming Lu, Martin Volwerk, Zoltán Vörös, Xuanye Ma, Shui Wang

Publications

The feature and origin of current sheet flapping motions are one of most interesting issues of magnetospheric dynamics. In this paper we report the flapping motion of the current sheet detected in the tailward flow of a magnetic reconnection event on 7 February 2009. This flapping motion with frequency about 12 mHz was accompanied by magnetic turbulence. The observations by the tail‐elongated fleet of five Time History of Events and Macroscale Interactions during Substorms probes indicate that these flapping oscillations were rather confined within the tailward flow than were due to a global process. This flapping motion could be due …


Turbulence And Overturning Gravity Wave Effects Deduced From Mesospheric Na Density Between 100-105 Km At Andes Lidar Observatory, Chile, Alan Z. Liu, Channing P. Philbrick, Gary R. Swenson, Fabio A. Vargas Jan 2016

Turbulence And Overturning Gravity Wave Effects Deduced From Mesospheric Na Density Between 100-105 Km At Andes Lidar Observatory, Chile, Alan Z. Liu, Channing P. Philbrick, Gary R. Swenson, Fabio A. Vargas

Publications

Atmospheric turbulence activity in the mesosphere and lower thermosphere (MLT) region is determined from narrowband Na lidar measurements obtained over 27 nights between 85-105 km altitude at the Andes Lidar Observatory (ALO) in Cerro Pachón, Chile (30.3ºS, 70.7ºW). Photocount perturbations in the applicable spectral subrange are used as a tracer of turbulence activity. Mean altitude profiles reveal a log-scale linear increase in turbulence perturbation amplitude above 95 km. The observed trend is compared against global mean constituent transport profiles derived from SABER and SCIAMACHY satellite borne measurements.


A Statistical Study Of The Dawn-Dusk Asymmetry Of Ion Temperature Anistrophy And Mirror Mode Occurrence In The Terrestrial Dayside Magnetosheath Using Themis Data, A. P. Dimmock, A. Osmane, T. I. Pulkkinen, K. Nykyri Jun 2015

A Statistical Study Of The Dawn-Dusk Asymmetry Of Ion Temperature Anistrophy And Mirror Mode Occurrence In The Terrestrial Dayside Magnetosheath Using Themis Data, A. P. Dimmock, A. Osmane, T. I. Pulkkinen, K. Nykyri

Publications

We present a statistical study of ion temperature anisotropy and mirror mode activity in the Earth's dayside magnetosheath using 6 years of Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations focusing on the quantification of dawn-dusk asymmetry as a function of upstream conditions and distance from the magnetopause. Our statistical data show a pronounced dusk favored asymmetry of T⊥/T∥ which drives a similar asymmetry of mirror mode activity. T⊥/T∥ decreases with increasing solar wind Alfvén Mach number, whereas mirror mode occurrence increases. In both cases, the relative asymmetry between the dawn and dusk flanks decrease with increasing …


A Statistical Study Of Magnetic Field Fluctuations In The Dayside Magnetosheath And Their Dependence On Upstream Solar Wind Conditions, A. P. Dimmock, K. Nykyri, T. I. Pulkkinen Aug 2014

A Statistical Study Of Magnetic Field Fluctuations In The Dayside Magnetosheath And Their Dependence On Upstream Solar Wind Conditions, A. P. Dimmock, K. Nykyri, T. I. Pulkkinen

Publications

The magnetosheath functions as a natural interface connecting the interplanetary and magnetospheric plasma. Since the magnetosheath houses the shocked solar wind, it is populated with abundant magnetic field turbulence which are generated both locally and externally. Although the steady state magnetosheath is to date relatively well understood, the same cannot be said of transient magnetic perturbations due to their kinetic nature and often complex and numerous generation mechanisms. The current manuscript presents a statistical study of magnetic field fluctuations in the dayside magnetosheath as a function of upstream solar wind conditions. We concentrate on the ambient higher-frequency fluctuations in the …


The Link Between Shocks, Turbulence And Magnetic Reconnection In Collisionless Plasmas, H. Karimabadi, V. Roytershteyn, H. X. Vu, Y. Omelchenko, J. Scudder, W. Daughton, A. Dimmock, Katariina (Heidi) Nykyri, Et Al. Apr 2014

The Link Between Shocks, Turbulence And Magnetic Reconnection In Collisionless Plasmas, H. Karimabadi, V. Roytershteyn, H. X. Vu, Y. Omelchenko, J. Scudder, W. Daughton, A. Dimmock, Katariina (Heidi) Nykyri, Et Al.

Publications

Global hybrid (electron fluid, kinetic ions) and fully kinetic simulations of the magnetosphere have been used to show surprising interconnection between shocks, turbulence and magnetic reconnection. In particular collisionless shocks with their reflected ions that can get upstream before retransmission can generate previously unforeseen phenomena in the post shocked flows: (i) formation of reconnecting current sheets and magnetic islands with sizes up to tens of ion inertial length. (ii) Generation of large scale low frequency electromagnetic waves that are compressed and amplified as they cross the shock. These 'wavefronts' maintain their integrity for tens of ion cyclotron times but eventually …


Asymptotic Multi-Layer Analysis Of Wind Over Unsteady Monochromatic Surface Waves, Shahrdad Sajjadi, Julian Hunt, Frederique Drullion Dec 2013

Asymptotic Multi-Layer Analysis Of Wind Over Unsteady Monochromatic Surface Waves, Shahrdad Sajjadi, Julian Hunt, Frederique Drullion

Publications

Asymptotic multi-layer analyses and computation of solutions for turbulent flows over steady and unsteady monochromatic surface wave are reviewed, in the limits of low turbulent stresses and small wave amplitude. The structure of the flow is defined in terms of asymptotically-matched thin-layers, namely the surface layer and a critical layer, whether it is ‘elevated’ or ‘immersed’, corresponding to its location above or within the surface layer. The results particularly demonstrate the physical importance of the singular flow features and physical implications of the elevated critical layer in the limit of the unsteadiness tending to zero. These agree with the variational …


Turbulence And Wave Dynamics Across Gas–Liquid Interfaces, Shahrdad Sajjadi, Julian Hunt, Stephen Belcher, Derek Stretch, John Clegg Jul 2011

Turbulence And Wave Dynamics Across Gas–Liquid Interfaces, Shahrdad Sajjadi, Julian Hunt, Stephen Belcher, Derek Stretch, John Clegg

Publications

Mechanisms are reviewed here for the distortion of turbulent flows near thin density interfaces and their effects on transfer processes across them. Firstly the results of rapid distortion calculations show how the in homogeneous eddy structure depends on whether the turbulence is generated above or below the interface, or in both regions. The flow is unstratified and the buoyancy forces are stable and strong enough relative to the inertial forces that the interface is continuous. It is shown that as the surface blocks the vertical turbulent eddy motions, horizontal straining motions are induced which affect the surface viscous layers and …