Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 34

Full-Text Articles in Physical Sciences and Mathematics

Kinematics Of Fluids, Andrei Ludu Nov 2022

Kinematics Of Fluids, Andrei Ludu

Publications

The goal of this chapter is to discuss the general frame of hydrodynamics, like particle trajectories (path lines), streamlines, streak lines, free surfaces, and fluid surfaces, and to compare their behavior in the Eulerian and Lagrangian frames. The following sections and chapters proceed on the assumption that the fluid is practically continuous and homogeneous in structure. Of course, the concept of continuum is an abstraction that does not take into account the molecular and nuclear structure of matter. In that, we assume that the properties of the fluid do not change if we consider smaller and smaller amounts of matter …


Hydrodynamics, Andrei Ludu Nov 2022

Hydrodynamics, Andrei Ludu

Publications

The mathematical description of the states of a fluid is based on the study of three fields defined on the domain occupied by the fluid: the velocity field V, the density ρ, and the pressure field P. These three “unknowns” are determined by integrating other five scalar equations, namely the mass conservation (continuity equation), the three components of the equation of momentum balance (Euler or Navier–Stokes), and the energy balance. This last equation needs in addition information about the thermodynamics of the fluid, so it may need to be supplied with some equation of state. In addition to these five …


The Replacement Rule For Nonlinear Shallow Water Waves, A. Ludu, Z. Zong Apr 2022

The Replacement Rule For Nonlinear Shallow Water Waves, A. Ludu, Z. Zong

Publications

When a (1 + 1)-dimensional nonlinear PDE in real function η(x, t) admits localized traveling solutions we can consider L to be the average width of the envelope, A the average value of the amplitude of the envelope, and V the group velocity of such a solution. The replacement rule (RR or nonlinear dispersion relation) procedure is able to provide a simple qualitative relation between these three parameters, without actually solve the equation. Examples are provided from KdV, C-H and BBM equations, but the procedure appears to be almost universally valid for such (1 + 1)-dimensional nonlinear PDE and their …


A Numerical Solution Of Water Flow In Unsaturated Soil With Evapotraspiration, Andrei Ludu, Harihar Khanal, Ramesh Chandra Timsina, Kedar Nath Uprety Dec 2021

A Numerical Solution Of Water Flow In Unsaturated Soil With Evapotraspiration, Andrei Ludu, Harihar Khanal, Ramesh Chandra Timsina, Kedar Nath Uprety

Publications

Flow movement in unsaturated soil can be expressed by Richards equation. This equation can be obtained by applying the mass conversation law and the Darcy law. In this work, we solve one-dimensional Kirchhoff transformed Richards equation with loss of water due to the evaporation of unsaturated porous media (soils) and transpiration of plants numerically using Crank-Nicolson method. The result has compared with evapotranspiration function and without it in the governing equation. It has found that an additional work in time and flow movement is needs to reach the given boundary condition for the model without evapotranspiration.


Reduced-Order Dynamic Modeling And Robust Nonlinear Control Of Fluid Flow Velocity Fields, Anu Kossery Jayaprakash, William Mackunis, Vladimir Golubev, Oksana Stalnov Dec 2021

Reduced-Order Dynamic Modeling And Robust Nonlinear Control Of Fluid Flow Velocity Fields, Anu Kossery Jayaprakash, William Mackunis, Vladimir Golubev, Oksana Stalnov

Publications

A robust nonlinear control method is developed for fluid flow velocity tracking, which formally addresses the inherent challenges in practical implementation of closed-loop active flow control systems. A key challenge being addressed here is flow control design to compensate for model parameter variations that can arise from actuator perturbations. The control design is based on a detailed reduced-order model of the actuated flow dynamics, which is rigorously derived to incorporate the inherent time-varying uncertainty in the both the model parameters and the actuator dynamics. To the best of the authors’ knowledge, this is the first robust nonlinear closed-loop active flow …


Nonlinear Schrödinger Equation Solitons On Quantum Droplets, A. Ludu, A.S. Carstea Jul 2021

Nonlinear Schrödinger Equation Solitons On Quantum Droplets, A. Ludu, A.S. Carstea

Publications

Irrotational flow of a spherical thin liquid layer surrounding a rigid core is described using the defocusing nonlinear Schrödinger equation. Accordingly, azimuthal moving nonlinear waves are modeled by periodic dark solitons expressed by elliptic functions. In the quantum regime the algebraic Bethe ansatz is used in order to capture the energy levels of such motions, which we expect to be relevant for the dynamics of the nuclear clusters in deformed heavy nuclei surface modeled by quantum liquid drops. In order to validate the model we match our theoretical energy spectra with experimental results on energy, angular momentum, and parity for …


Experimental Study Of Breathers And Rogue Waves Generated By Random Waves Over Non-Uniform Bathymetry, A. Ludu, A. Wang, Z. Zong, L. Zou, Y. Pei Aug 2020

Experimental Study Of Breathers And Rogue Waves Generated By Random Waves Over Non-Uniform Bathymetry, A. Ludu, A. Wang, Z. Zong, L. Zou, Y. Pei

Publications

We present experimental evidence of formation and persistence of localized waves, breathers, and solitons, occurring in a random sea state and uniformly traveling over non-uniform bathymetry. Recent studies suggest connections between breather dynamics and irregular sea states and between extreme wave formation and breathers, random sea states, or non-uniform bathymetry individually. In this paper, we investigate the joint connection between these phenomena, and we found that breathers and deep-water solitons can persist in more complex environments. Three different sets of significant heights have been generated within a Joint North Sea Wave Observation Project wave spectrum, and the wave heights were …


Semi-Lagrangian Implicit Bhatnagar-Gross-Krook Collision Model For The Finite-Volume Discrete Boltzmann Method, Leitao Chen, Sauro Succi, Xiaofeng Cai, Laura Schaefer Jun 2020

Semi-Lagrangian Implicit Bhatnagar-Gross-Krook Collision Model For The Finite-Volume Discrete Boltzmann Method, Leitao Chen, Sauro Succi, Xiaofeng Cai, Laura Schaefer

Publications

In order to increase the accuracy of temporal solutions, reduce the computational cost of time marching, and improve the stability associated with collisions for the finite-volume discrete Boltzmann method, an advanced implicit Bhatnagar-Gross-Krook (BGK) collision model using a semi-Lagrangian approach is proposed in this paper. Unlike existing models, in which the implicit BGK collision is resolved either by a temporal extrapolation or by a variable transformation, the proposed model removes the implicitness by tracing the particle distribution functions (PDFs) back in time along their characteristic paths during the collision process. An interpolation scheme is needed to evaluate the PDFs at …


An Analysis Of The Atmospheric Propagation Of Underground-Explosion-Generated Infrasonic Waves Based On The Equations Of Fluid Dynamics: Ground Recordings, Roberto Sabatini, Jonathan B. Snively, Michael P. Hickey, J. L. Garrison Dec 2019

An Analysis Of The Atmospheric Propagation Of Underground-Explosion-Generated Infrasonic Waves Based On The Equations Of Fluid Dynamics: Ground Recordings, Roberto Sabatini, Jonathan B. Snively, Michael P. Hickey, J. L. Garrison

Publications

An investigation on the propagation of underground-explosion-generated infrasonic waves is carried out via numerical simulations of the equations of fluid dynamics. More specifically, the continuity, momentum, and energy conservation equations are solved along with the Herzfeld-Rice equations in order to take into account the effects of vibrational relaxation phenomena. The radiation of acoustic energy by the ground motion caused by underground explosions is initiated by enforcing the equality, at ground level, between the component of the air velocity normal to the Earth's surface and the normal velocity of the ground layer. The velocity of the ground layer is defined semi-empirically …


Ice Spiral Patterns On The Ocean Surface, Andrei Ludu, Zhi Zong Jul 2019

Ice Spiral Patterns On The Ocean Surface, Andrei Ludu, Zhi Zong

Publications

We investigate a new two-dimensional compressible Navier-Stokes hydrodynamic model design to explain and study large scale ice swirls formation at the surface of the ocean. The linearized model generates a basis of Bessel solutions from where various types of spiral patterns can be generated and their evolution and stability in time analyzed. By restricting the nonlinear system of equations to its quadratic terms we obtain swirl solutions emphasizing logarithmic spiral geometry. The resulting solutions are analyzed and validated using three mathematical approaches: one predicting the formation of patterns as Townes solitary modes, another approach mapping the nonlinear system into a …


Meshless Modeling Of Flow Dispersion And Progressive Piping In Poroelastic Levees, Anthony Khoury, Eduardo Divo, Alain J. Kassab, Sai Kakuturu, Lakshmi Reddi Jun 2019

Meshless Modeling Of Flow Dispersion And Progressive Piping In Poroelastic Levees, Anthony Khoury, Eduardo Divo, Alain J. Kassab, Sai Kakuturu, Lakshmi Reddi

Publications

Performance data on earth dams and levees continue to indicate that piping is one of the major causes of failure. Current criteria for prevention of piping in earth dams and levees have remained largely empirical. This paper aims at developing a mechanistic understanding of the conditions necessary to prevent piping and to enhance the likelihood of self-healing of cracks in levees subjected to hydrodynamic loading from astronomical and meteorological (including hurricane storm surge-induced) forces. Systematic experimental investigations are performed to evaluate erosion in finite-length cracks as a result of transient hydrodynamic loading. Here, a novel application of the localized collocation …


Floating Active Baffles, System And Method Of Slosh Damping Comprising The Same, Dae Won Kim, Rudy L. Baum, Vijay Santhanam, Balaji Sivasubramanian, Sathya Gangadharan Sep 2018

Floating Active Baffles, System And Method Of Slosh Damping Comprising The Same, Dae Won Kim, Rudy L. Baum, Vijay Santhanam, Balaji Sivasubramanian, Sathya Gangadharan

Publications

This disclosure provides a system for damping slosh of a liquid within a tank, a baffle for use in the system, and a method of damping slosh using the system. The system includes a plurality of baffles. Each baffle has a body configured to substantially float upon the liquid. Each baffle also has an activation material received along at least a portion of the body. The activation material is magnetically reactive provided in a quantity sufficient to enable the body to be manipulated in the presence of a magnetic field (M). The system further includes an actuator configured to pro­vide …


Patient-Specific Multiscale Computational Fluid Dynamics Assessment Of Embolization Rates In The Hybrid Norwood: Effects Of Size And Placement Of The Reverse Blalock–Taussig Shunt, Ray Prather, John Seligson, Marcus Ni, Eduardo Divo, Alain J. Kassab, William Decampli May 2018

Patient-Specific Multiscale Computational Fluid Dynamics Assessment Of Embolization Rates In The Hybrid Norwood: Effects Of Size And Placement Of The Reverse Blalock–Taussig Shunt, Ray Prather, John Seligson, Marcus Ni, Eduardo Divo, Alain J. Kassab, William Decampli

Publications

The hybrid Norwood operation is performed to treat hypoplastic left heart syndrome. Distal arch obstruction may compromise flow to the brain. In a variant of this procedure, a synthetic graft (reverse Blalock–Taussig shunt) is placed between the pulmonary trunk and innominate artery to improve upper torso blood flow. Thrombi originating in the graft may embolize to the brain. In this study, we used computational fluid dynamics and particle tracking to investigate the patterns of particle embolization as a function of the anatomic position of the reverse Blalock–Taussig shunt. The degree of distal arch obstruction and position of particle origin influence …


Godunov-Type Upwind Flux Schemes Of The Two-Dimensional Finite Volume Discrete Boltzmann Method, Leitao Chen, Laura Schaefer May 2018

Godunov-Type Upwind Flux Schemes Of The Two-Dimensional Finite Volume Discrete Boltzmann Method, Leitao Chen, Laura Schaefer

Publications

A simple unified Godunov-type upwind approach that does not need Riemann solvers for the flux calculation is developed for the finite volume discrete Boltzmann method (FVDBM) on an unstructured cell-centered triangular mesh. With piecewise-constant (PC), piecewise-linear (PL) and piecewise-parabolic (PP) reconstructions, three Godunov-type upwind flux schemes with different orders of accuracy are subsequently derived. After developing both a semi-implicit time marching scheme tailored for the developed flux schemes, and a versatile boundary treatment that is compatible with all of the flux schemes presented in this paper, numerical tests are conducted on spatial accuracy for several single-phase flow problems. Four major …


An Asymptotic Analysis For Generation Of Unsteady Surface Waves On Deep Water By Turbulence, Shahrdad Sajjadi Mar 2018

An Asymptotic Analysis For Generation Of Unsteady Surface Waves On Deep Water By Turbulence, Shahrdad Sajjadi

Publications

The detailed mathematical study of the recent paper by Sajjadi, Hunt and Drullion (2014) is presented. The mathematical developement considered by them, for unsteady growing monochromatic waves is also extended to Stokes waves. The present contribution also demonstrates agreement with the pioneering work of Belcher and Hunt (1993) which is valid in the limit of the complex part of the wave phase speed ci ↓ 0. It is further shown that the energy-transfer parameter and the surface shear stress for a Stokes wave reverts to a monochromatic wave when the second harmonic is excluded. Furthermore, the present theory can …


An Rbf Interpolation Blending Scheme For Effective Shock-Capturing, M. Harris, Eduardo Divo, Alain J. Kassab Apr 2017

An Rbf Interpolation Blending Scheme For Effective Shock-Capturing, M. Harris, Eduardo Divo, Alain J. Kassab

Publications

In recent years significant focus has been given to the study of Radial basis functions (RBF), especially in their use on solving partial differential equations (PDE). RBF have an impressive capability of inter- polating scattered data, even when this data presents localized discontinuities. However, for infinitely smooth RBF such as the Multiquadrics, inverse Multiquadrics, and Gaussian, the shape parameter must be chosen properly to obtain accurate approximations while avoiding ill-conditioning of the interpolating matrices. The optimum shape parameter can vary significantly depending on the field, particularly in locations of steep gradients, shocks, or discontinuities. Typically, the shape parameter is chosen …


A Coupled Localized Rbf Meshless/Drbem Formulation For Accurate Modeling Of Incompressible Fluid Flows, Leonardo Bueno, Eduardo Divo, Alain J. Kassab Apr 2017

A Coupled Localized Rbf Meshless/Drbem Formulation For Accurate Modeling Of Incompressible Fluid Flows, Leonardo Bueno, Eduardo Divo, Alain J. Kassab

Publications

Velocity-pressure coupling schemes for the solution of incompressible fluid flow problems in Computational Fluid Dynamics (CFD) rely on the formulation of Poisson-like equations through projection methods. The solution of these Poisson-like equations represent the pressure correction and the velocity correction to ensure proper satisfaction of the conservation of mass equation at each step of a time-marching scheme or at each level of an iteration process. Inaccurate solutions of these Poisson-like equations result in meaningless instantaneous or intermediate approximations that do not represent the proper time-accurate behavior of the flow. The fact that these equations must be solved to convergence at …


Optimizing Jets For Wake Control Of Ground Vehicles, Domenic Barsotti, Sandra Boetcher Mar 2017

Optimizing Jets For Wake Control Of Ground Vehicles, Domenic Barsotti, Sandra Boetcher

Publications

A system of wake control for a ground vehicle to help promote increased fuel efficiencies of the ground vehicle by modifying an air flow wake generated during the movement of the vehicle in a forward direction. The system includes at least one slot jet configured to be located along a rear profile portion of the ground vehicle. The at least one slot jet is configured to provide a continuous flow of air at a non-zero velocity when the ground vehicle is moving in a forward direction, the non-zero velocity being at least partially directed in a rearward direction with an …


Wave Motion Induced By Turbulent Shear Flows Over Growing Stokes Waves, Shahrdad Sajjadi, Serena Robertson, Rebecca Harvey, Mary Brown Dec 2016

Wave Motion Induced By Turbulent Shear Flows Over Growing Stokes Waves, Shahrdad Sajjadi, Serena Robertson, Rebecca Harvey, Mary Brown

Publications

The recent analytical of multi-layer analyses proposed by Sajjadi et al. (J Eng Math 84:73, 2014) (SHD14 therein) is solved numerically for atmospheric turbulent shear flows blowing over growing (or unsteady) Stokes (bimodal) water waves, of low-to-moderate steepness. For unsteady surface waves, the amplitude a(t)∝ekcita(t)∝ekcit, where kcikci is the wave growth factor, k is the wavenumber, and cici is the complex part of the wave phase speed, and thus, the waves begin to grow as more energy is transferred to them by the wind. This will then display the critical height to a point, where the thickness of the inner …


Growth Of Groups Of Wind Generated Waves, Frederique Drullion, Shahrdad Sajjadi Jul 2016

Growth Of Groups Of Wind Generated Waves, Frederique Drullion, Shahrdad Sajjadi

Publications

In this paper we demonstrate numerical computations of turbulent wind blowing over group of waves that are growing in time. The numerical model adopted for the turbulence model is based on differential second-moment model that was adopted for growing idealized waves by Drullion & Sajjadi (2014). The results obtained here demonstrate the formation of cat's-eye which appear asymmetrically over the waves within a group.


Growth Of Unsteady Wave Groups By Shear Flows, Shahrdad Sajjadi, Julian Hunt, Frederique Drullion Jul 2016

Growth Of Unsteady Wave Groups By Shear Flows, Shahrdad Sajjadi, Julian Hunt, Frederique Drullion

Publications

A weakly nonlinear theory has been proposed and developed for calculating the energy- transfer rate to individual waves in a group. It is shown what portion of total energy- transfer rate, over the envelope of wave group, affects individual waves in the group. From this an expression for complex phase speed of individual waves is calculated. It is deduced that each wave in a group does not grow at the same rate. It is shown that the critical layer is no longer symmetrical compared with the ideal monochromatic waves. This asymmetry causes the critical layer height to be lower over …


Growth Of Stokes Waves Induced By Wind On A Viscous Liquid Of Infinite Depth, Shahrdad Sajjadi Apr 2016

Growth Of Stokes Waves Induced By Wind On A Viscous Liquid Of Infinite Depth, Shahrdad Sajjadi

Publications

The original investigation of Lamb (1932, x349) for the effect of viscosity on monochromatic surface waves is extended to account for second-order Stokes surface waves on deep water in the presence of surface tension. This extension is used to evaluate interfacial impedance for Stokes waves under the assumption that the waves are growing and hence the surface waves are unsteady. Thus, the previous investigation of Sajjadi et al. (2014) is further explored in that (i) the surface wave is unsteady and nonlinear, and (ii) the effect of the water viscosity, which affects surface stresses, is taken into account. The determination …


Evolution Of Spherical Cavitation Bubbles: Parametric And Closed-Form Solutions, S.C. Mancas, Haret C. Rosu Feb 2016

Evolution Of Spherical Cavitation Bubbles: Parametric And Closed-Form Solutions, S.C. Mancas, Haret C. Rosu

Publications

We present an analysis of the Rayleigh-Plesset equation for a three dimensional vacuous bubble in water. In the simplest case when the effects of surface tension are neglected, the known parametric solutions for the radius and time evolution of the bubble in terms of a hypergeometric function are briefly reviewed. By including the surface tension, we show the connection between the Rayleigh-Plesset equation and Abel’s equation, and obtain the parametric rational Weierstrass periodic solutions following the Abel route. In the same Abel approach, we also provide a discussion of the nonintegrable case of nonzero viscosity for which we perform a …


Formation Of Three-Dimensional Surface Waves On Deep-Water Using Elliptic Solutions Of Nonlinear Schrödinger Equation, Shahrdad G. Sajjadi, S.C. Mancas, Frederique Drullion Jul 2015

Formation Of Three-Dimensional Surface Waves On Deep-Water Using Elliptic Solutions Of Nonlinear Schrödinger Equation, Shahrdad G. Sajjadi, S.C. Mancas, Frederique Drullion

Publications

A review of three-dimensional waves on deep-water is presented. Three forms of three-dimensionality, namely oblique, forced and spontaneous types, are identified. An alternative formulation for these three-dimensional waves is given through cubic nonlinear Schrödinger equation. The periodic solutions of the cubic nonlinear Schrödinger equation are found using Weierstrass elliptic ℘ functions. It is shown that the classification of solutions depends on the boundary conditions, wavenumber and frequency. For certain parameters, Weierstrass ℘ functions are reduced to periodic, hyperbolic or Jacobi elliptic functions. It is demonstrated that some of these solutions do not have any physical significance. An analytical solution of …


A Unified And Preserved Dirichlet Boundary Treatment For The Cell-Centered Finite Volume Discrete Boltzmann Method, Leitao Chen, Laura A. Schaefer Feb 2015

A Unified And Preserved Dirichlet Boundary Treatment For The Cell-Centered Finite Volume Discrete Boltzmann Method, Leitao Chen, Laura A. Schaefer

Publications

A new boundary treatment is proposed for the finite volume discrete Boltzmann method (FVDBM) that can be used for accurate simulations of curved boundaries and complicated flow conditions. First, a brief review of different boundary treatments for the general Boltzmann simulations is made in order to primarily explain what type of boundary treatment will be developed in this paper for the cell-centered FVDBM. After that, the new boundary treatment along with the cell-centered FVDBM model is developed in detail. Next, the proposed boundary treatment is applied to a series of numerical tests with a detailed discussion of its qualitative and …


Asymptotic Multi-Layer Analysis Of Wind Over Unsteady Monochromatic Surface Waves, Shahrdad Sajjadi, Julian Hunt, Frederique Drullion Dec 2013

Asymptotic Multi-Layer Analysis Of Wind Over Unsteady Monochromatic Surface Waves, Shahrdad Sajjadi, Julian Hunt, Frederique Drullion

Publications

Asymptotic multi-layer analyses and computation of solutions for turbulent flows over steady and unsteady monochromatic surface wave are reviewed, in the limits of low turbulent stresses and small wave amplitude. The structure of the flow is defined in terms of asymptotically-matched thin-layers, namely the surface layer and a critical layer, whether it is ‘elevated’ or ‘immersed’, corresponding to its location above or within the surface layer. The results particularly demonstrate the physical importance of the singular flow features and physical implications of the elevated critical layer in the limit of the unsteadiness tending to zero. These agree with the variational …


A Study Of Energy Transfer Of Wind And Ocean Waves, Shahrdad Sajjadi, Mason Bray Dec 2013

A Study Of Energy Transfer Of Wind And Ocean Waves, Shahrdad Sajjadi, Mason Bray

Publications

To develop a better understanding of energy transfer between wind and different types of waves a model was created to determine growth factors and energy transfers on breaking waves and the resulting velocity vectors. This model was used to build on the research of Sajjadi et al (1996) on the growth of waves by sheared flow and takes models of wave velocities developed by Weber and Melsom (1993) and end energy transfer by Sajjadi, Hunt and Drullion (2012).


Left Ventricular Assist Devices: Engineering Design Considerations, Marwan A. Simaan, Eduardo Divo, George Faragallah, Yu Wang Aug 2011

Left Ventricular Assist Devices: Engineering Design Considerations, Marwan A. Simaan, Eduardo Divo, George Faragallah, Yu Wang

Publications

Patients with end-stage congestive heart failure awaiting heart transplantation often wait long periods of time (300 days or more on the average) before a suitable donor heart becomes available. The medical community has placed increased emphasis on the use of Left Ventricular Assist Devices or LVADs that can substitute for, or enhance, the function of the natural heart while the patient is waiting for the heart transplant (Poirier, 1997; Frazier & Myers, 1999). Essentially, a rotary LVAD is a pump that operates continuously directing blood from the left ventricle into the aorta by avoiding the aortic valve. Generally speaking, the …


Turbulence And Wave Dynamics Across Gas–Liquid Interfaces, Shahrdad Sajjadi, Julian Hunt, Stephen Belcher, Derek Stretch, John Clegg Jul 2011

Turbulence And Wave Dynamics Across Gas–Liquid Interfaces, Shahrdad Sajjadi, Julian Hunt, Stephen Belcher, Derek Stretch, John Clegg

Publications

Mechanisms are reviewed here for the distortion of turbulent flows near thin density interfaces and their effects on transfer processes across them. Firstly the results of rapid distortion calculations show how the in homogeneous eddy structure depends on whether the turbulence is generated above or below the interface, or in both regions. The flow is unstratified and the buoyancy forces are stable and strong enough relative to the inertial forces that the interface is continuous. It is shown that as the surface blocks the vertical turbulent eddy motions, horizontal straining motions are induced which affect the surface viscous layers and …


Numerical Studies Of Particle Laden Flow In Dispersed Phase, Shahrdad Sajjadi, Rumma Dutta Jul 2010

Numerical Studies Of Particle Laden Flow In Dispersed Phase, Shahrdad Sajjadi, Rumma Dutta

Publications

To better understand the hydrodynamic flow behavior in turbulence, Particle-Fluid flow have been studied using our Direct Numerical(DNS) based software DSM on MUSCL-QUICK and finite volume algorithm. The particle flow was studied using Eulerian-Eulerian Quasi Brownian Motion(QBM) based approach. The dynamics is shown for various particle sizes which are very relevant to spray mechanism for Industrial applications and Bio medical applications.