Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

2018

Topological Insulators

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Electronic Fingerprints Of Cr And V Dopants In The Topological Insulator Sb₂Te₃, Wenhan Zhang, Damien West, Seng Huat Lee, Yunsheng Qiu, Cui-Zu Chang, Jagadeesh S. Moodera, Yew San Hor, Shengbai Zhang, Weida Wu Sep 2018

Electronic Fingerprints Of Cr And V Dopants In The Topological Insulator Sb₂Te₃, Wenhan Zhang, Damien West, Seng Huat Lee, Yunsheng Qiu, Cui-Zu Chang, Jagadeesh S. Moodera, Yew San Hor, Shengbai Zhang, Weida Wu

Physics Faculty Research & Creative Works

By combining scanning tunneling microscopy/spectroscopy and first-principles calculations, we systematically study the local electronic states of magnetic dopants V and Cr in the topological insulator (TI) Sb2Te3. Spectroscopic imaging shows diverse local defect states between Cr and V, which agree with our first-principle calculations. The unique spectroscopic features of V and Cr dopants provide electronic fingerprints for the codoped magnetic TI samples with the enhanced quantum anomalous Hall effect. Our results also facilitate the exploration of the underlying mechanism of the enhanced quantum anomalous Hall temperature in Cr/V codoped TIs.


Scanning Tunneling Spectroscopy Investigations Of Superconducting-Doped Topological Insulators: Experimental Pitfalls And Results, Stefan Wilfert, Paolo Sessi, Zhiwei Wang, Henrik Schmidt, M. Carmen Martínez-Velarte, Seng Huat Lee, Yew San Hor, Alexander F. Otte, Yoichi Ando, Weida Wu, Matthias Bode Aug 2018

Scanning Tunneling Spectroscopy Investigations Of Superconducting-Doped Topological Insulators: Experimental Pitfalls And Results, Stefan Wilfert, Paolo Sessi, Zhiwei Wang, Henrik Schmidt, M. Carmen Martínez-Velarte, Seng Huat Lee, Yew San Hor, Alexander F. Otte, Yoichi Ando, Weida Wu, Matthias Bode

Physics Faculty Research & Creative Works

Recently, the doping of topological insulators has attracted significant interest as a potential route towards topological superconductivity. Because many experimental techniques lack sufficient surface sensitivity, however, definite proof of the coexistence of topological surface states and surface superconductivity is still outstanding. Here we report on highly surface sensitive scanning tunneling microscopy and spectroscopy experiments performed on Tl-doped Bi2Te3, a three-dimensional topological insulator which becomes superconducting in the bulk at TC=2.3 K. Landau level spectroscopy as well as quasiparticle interference mapping clearly demonstrated the presence of a topological surface state with a Dirac point energy …