Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

2007

Mathematical Models

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Analysis Of Experimental Data For Ion-Impact Single Ionization Of Helium With Monte Carlo Event Generators Based On Quantum Theory, M. Dürr, B. Najjari, Michael Schulz, A. Dorn, R. Moshammer, A. B. Voitkiv, J. Ullrich Jul 2007

Analysis Of Experimental Data For Ion-Impact Single Ionization Of Helium With Monte Carlo Event Generators Based On Quantum Theory, M. Dürr, B. Najjari, Michael Schulz, A. Dorn, R. Moshammer, A. B. Voitkiv, J. Ullrich

Physics Faculty Research & Creative Works

Recent multiply differential experimental data taken with reaction microscopes severely challenge predictions of quantum mechanical few-body models. Here, we report on a thorough analysis of all known possible experimental resolution effects and their influence on the extracted cross sections. Using a Monte Carlo event generator to simulate true events on the basis of quantum calculations allows us to consistently incorporate all aspects of the experimental resolution of the reaction microscope. We study the effect of the instrumental function in single ionization of helium by 3.6 MeV/u Au53+ and 100 MeV/u C6+ ions and find it to significantly modify the simulated …


Photon Angular Distribution And Nuclear-State Alignment In Nuclear Excitation By Electron Capture, Adriana Palffy, Zoltan Harman, Andrey S. Surzhykov, Ulrich D. Jentschura Jan 2007

Photon Angular Distribution And Nuclear-State Alignment In Nuclear Excitation By Electron Capture, Adriana Palffy, Zoltan Harman, Andrey S. Surzhykov, Ulrich D. Jentschura

Physics Faculty Research & Creative Works

The alignment of nuclear states resonantly formed in nuclear excitation by electron capture (NEEC) is studied by means of a density matrix technique. The vibrational excitations of the nucleus are described by a collective model and the electrons are treated in a relativistic framework. Formulas for the angular distribution of photons emitted in the nuclear relaxation are derived. We present numerical results for alignment parameters and photon angular distributions for a number of heavy elements in the case of E2 nuclear transitions. Our results are intended to help future experimental attempts to discern NEEC from radiative recombination, which is the …