Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

2005

Density Functional Theory

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Role Of Embedded Clustering In Dilute Magnetic Semiconductors: Cr Doped Gan, Julia E. Medvedeva, B. Delley, N. Newman, C. Stampfl, X. Y. Cui, Arthur J. Freeman Jan 2005

Role Of Embedded Clustering In Dilute Magnetic Semiconductors: Cr Doped Gan, Julia E. Medvedeva, B. Delley, N. Newman, C. Stampfl, X. Y. Cui, Arthur J. Freeman

Physics Faculty Research & Creative Works

Results of extensive density-functional studies provide direct evidence that Cr atoms in Cr:GaN have a strong tendency to form embedded clusters, occupying Ga sites. Significantly, for larger than 2-Cr-atom clusters, states containing antiferromagnetic coupling with net spin in the range 0.06-1.47 µB/Cr are favored. We propose a picture where various configurations coexist and the statistical distribution and associated magnetism will depend sensitively on the growth details. Such a view may elucidate many puzzling observations related to the structural and magnetic properties of III-N and other dilute semiconductors.


Tunable Conductivity And Conduction Mechanism In An Ultraviolet Light Activated Electronic Conductor, Mariana I. Bertoni, Thomas O. Mason, Julia E. Medvedeva, Arthur J. Freeman, Kenneth R. Poeppelmeier, B. Delley Jan 2005

Tunable Conductivity And Conduction Mechanism In An Ultraviolet Light Activated Electronic Conductor, Mariana I. Bertoni, Thomas O. Mason, Julia E. Medvedeva, Arthur J. Freeman, Kenneth R. Poeppelmeier, B. Delley

Physics Faculty Research & Creative Works

A tunable conductivity has been achieved by controllable substitution of an ultraviolet light activated electronic conductor. The transparent conducting oxide system H-doped Ca12-xMgxAl14O33 (x=0,0.1,0.3,0.5,0.8,1.0) presents a conductivity that is strongly dependent on the substitution level and temperature. Four-point dc-conductivity decreases with x from 0.26 S/cm (x=0) to 0.106 S/cm (x=1) at room temperature. At each composition the conductivity increases (reversibly with temperature) until a decomposition temperature is reached; above this value, the conductivity drops dramatically due to hydrogen recombination and loss. The observed conductivity behavior is consistent with the predictions of our first principles density functional calculations for the Mg-substituted …