Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

2004

Light Absorption

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Hopping Versus Bulk Conductivity In Transparent Oxides: 12cao - 7al₂O₃, Julia E. Medvedeva, Arthur J. Freeman Aug 2004

Hopping Versus Bulk Conductivity In Transparent Oxides: 12cao - 7al₂O₃, Julia E. Medvedeva, Arthur J. Freeman

Physics Faculty Research & Creative Works

First-principles calculations of the mayenite-based oxide, [Ca12Al14O32]2+(2e-), reveal the mechanism responsible for its high conductivity. A detailed comparison of the electronic and optical properties of this material with those of the recently discovered transparent conducting oxide, H-doped UV-activated Ca12Al14O33, allowed us to conclude that the enhanced conductivity in [Ca12Al14O32]2+(2e-) is achieved by elimination of the Coulomb blockade of the charge carriers. This results in a transition from variable range-hopping behavior with a Coulomb gap in H-doped UV-irradiated Ca …


New Limits On The Drift Of Fundamental Constants From Laboratory Measurements, Marc P. Fischer, Nikolai N. Kolachevsky, Marcus Zimmermann, Ronald Holzwarth, Th H. Udem, Theodor Wolfgang Hansch, Michel Abgrall, Jan Grunert, Ivan Maksimovic, Sebastien Bize, Harold Marion, Franck Pereira M Dos Santos, Pierre Lemonde, Giorgio Santarelli, Ph Laurent, Andre Clairon, Christophe Salomon, Martin K. Haas, Ulrich D. Jentschura, Christoph H. Keitel Jun 2004

New Limits On The Drift Of Fundamental Constants From Laboratory Measurements, Marc P. Fischer, Nikolai N. Kolachevsky, Marcus Zimmermann, Ronald Holzwarth, Th H. Udem, Theodor Wolfgang Hansch, Michel Abgrall, Jan Grunert, Ivan Maksimovic, Sebastien Bize, Harold Marion, Franck Pereira M Dos Santos, Pierre Lemonde, Giorgio Santarelli, Ph Laurent, Andre Clairon, Christophe Salomon, Martin K. Haas, Ulrich D. Jentschura, Christoph H. Keitel

Physics Faculty Research & Creative Works

We have remeasured the absolute 1S-2S transition frequency νH in atomic hydrogen. A comparison with the result of the previous measurement performed in 1999 sets a limit of (-29 ± 57) Hz for the drift of νH with respect to the ground state hyperfine splitting νCs in 133Cs. Combining this result with the recently published optical transition frequency in 199Hg+ against νCs and a microwave 87Rb and 133Cs clock comparison, we deduce separate limits on α˙ / α = (-0.9 &plusm; 2.9) x 10-15 yr-1 and the fractional time …