Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Research & Creative Works

Numerical Analysis and Scientific Computing

Born Approximation

2015

Articles 1 - 1 of 1

Full-Text Articles in Physical Sciences and Mathematics

Kinematically Complete Study Of Low-Energy Electron-Impact Ionization Of Neon: Internormalized Cross Sections In Three-Dimensional Kinematics, Xueguang Ren, Sadek Amami, Oleg Zatsarinny, Thomas Pflüger, Marvin Weyland, Woon Yong Baek, Hans Rabus, Klaus Bartschat, Don H. Madison, Alexander Dorn Mar 2015

Kinematically Complete Study Of Low-Energy Electron-Impact Ionization Of Neon: Internormalized Cross Sections In Three-Dimensional Kinematics, Xueguang Ren, Sadek Amami, Oleg Zatsarinny, Thomas Pflüger, Marvin Weyland, Woon Yong Baek, Hans Rabus, Klaus Bartschat, Don H. Madison, Alexander Dorn

Physics Faculty Research & Creative Works

Low-energy (E0 0=65eV) electron-impact single ionization of Ne (2p) has been investigated to thoroughly test state-of-the-art theoretical approaches. The experimental data were measured using a reaction microscope, which can cover nearly the entire 4π solid angle for the secondary electron emission energies ranging from 2 to 8 eV, and projectile scattering angles ranging from 8.5⁰ to 20.0⁰. The experimental triple-differential cross sections are internormalized across all measured scattering angles and ejected energies. The experimental data are compared to predictions from a hybrid second-order distorted-wave Born plus R-matrix approach, the distorted-wave Born approximation with the inclusion of postcollision interaction (PCI), …