Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics Faculty Publications

Quantum Physics

Physics of elementary particles and fields

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan Jan 2023

Machine Learning-Based Jet And Event Classification At The Electron-Ion Collider With Applications To Hadron Structure And Spin Physics, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, Feng Yuan

Physics Faculty Publications

We explore machine learning-based jet and event identification at the future Electron-Ion Collider (EIC). We study the effectiveness of machine learning-based classifiers at relatively low EIC energies, focusing on (i) identifying the flavor of the jet and (ii) identifying the underlying hard process of the event. We propose applications of our machine learning-based jet identification in the key research areas at the future EIC and current Relativistic Heavy Ion Collider program, including enhancing constraints on (transverse momentum dependent) parton distribution functions, improving experimental access to transverse spin asymmetries, studying photon structure, and quantifying the modification of hadrons and jets in …


Measurement Of The ³He Spin-Structure Functions And Of Neutron (³He) Spin-Dependent Sum Rules At 0 .035≤Q²≤0 .24 Gev², V. Sulkosky, D. Hayes, C. E. Hyde, P. E. Ulmer, X. Zheng, L. Zhu, Et Al., Jefferson Lab E97-110 Collaboration Jan 2020

Measurement Of The ³He Spin-Structure Functions And Of Neutron (³He) Spin-Dependent Sum Rules At 0 .035≤Q²≤0 .24 Gev², V. Sulkosky, D. Hayes, C. E. Hyde, P. E. Ulmer, X. Zheng, L. Zhu, Et Al., Jefferson Lab E97-110 Collaboration

Physics Faculty Publications

The spin-structure functions g1 and g2, and the spin-dependent partial cross-section σπ have been extracted from the polarized cross-sections differences,

Δσ∥ (ν, Q2) and Δσ⊥ (ν,Q2) measured for the 3He(e, e')X reaction, in the E97-110 experiment at Jefferson Lab. Polarized electrons with energies from 1.147 to 4.404GeV were scattered at angles of 6and 9from a longitudinally or transversely polarized 3He target. The data cover the kinematic regions of the quasi-elastic, …


Role Of The Euclidean Signature In Lattice Calculations Of Quasidistributions And Other Nonlocal Matrix Elements, Raúl A. Briceño, Maxwell T. Hansen, Christopher J. Monahan Jan 2017

Role Of The Euclidean Signature In Lattice Calculations Of Quasidistributions And Other Nonlocal Matrix Elements, Raúl A. Briceño, Maxwell T. Hansen, Christopher J. Monahan

Physics Faculty Publications

Lattice quantum chromodynamics (QCD) provides the only known systematic, nonperturbative method for first-principles calculations of nucleon structure. However, for quantities such as light-front parton distribution functions (PDFs) and generalized parton distributions (GPDs), the restriction to Euclidean time prevents direct calculation of the desired observable. Recently, progress has been made in relating these quantities to matrix elements of spatially nonlocal, zero-time operators, referred to as quasidistributions. Still, even for these time-independent matrix elements, potential subtleties have been identified in the role of the Euclidean signature. In this work, we investigate the analytic behavior of spatially nonlocal correlation functions and demonstrate that …


High-Energy Effective Action From Scattering Of Qcd Shock Waves, Ian Balitsky Jan 2006

High-Energy Effective Action From Scattering Of Qcd Shock Waves, Ian Balitsky

Physics Faculty Publications

At high energies, the relevant degrees of freedom are Wilson lines--infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops


High-Energy Effective Action From Scattering Of Qcd Shock Waves, Ian Balitsky Jan 2005

High-Energy Effective Action From Scattering Of Qcd Shock Waves, Ian Balitsky

Physics Faculty Publications

At high energies, the relevant degrees of freedom are Wilson lines—infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.


Scattering Of Shock Waves In Qcd, Ian Balitsky Jan 2004

Scattering Of Shock Waves In Qcd, Ian Balitsky

Physics Faculty Publications

The cross section of heavy-ion collisions is represented as a double functional integral with the saddle point being the classical solution of the Yang-Mills equations with boundary conditions/sources in the form of two shock waves corresponding to the two colliding ions. I develop the expansion of this classical solution in powers of the commutator of the Wilson lines describing the colliding particles and calculate the first two terms of the expansion.


High Energy Effective Action From Scattering Of Shock Waves In Qcd, Ian Balitsky Jan 2000

High Energy Effective Action From Scattering Of Shock Waves In Qcd, Ian Balitsky

Physics Faculty Publications

The author demonstrates that the amplitude for high-energy scattering can be factorized as a convolution of the contributions due to fast and slow fields. The fast and slow fields interact by means of Wilson-line operators -- infinite gauge factors ordered along the straight line. The resulting factorization formula gives a starting point for a new approach to the effective action for high-energy scattering in QCD.