Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 26 of 26

Full-Text Articles in Physical Sciences and Mathematics

Extracting The Number Of Short Range Correlated Nucleon Pairs From Inclusive Electron Scattering Data, R. Weiss, A. W. Denniston, J. R. Pybus, O. Hen, E. Piasetzky, A. Schmidt, L. B. Weinstein, N. Barnea Mar 2021

Extracting The Number Of Short Range Correlated Nucleon Pairs From Inclusive Electron Scattering Data, R. Weiss, A. W. Denniston, J. R. Pybus, O. Hen, E. Piasetzky, A. Schmidt, L. B. Weinstein, N. Barnea

Physics Faculty Publications

The extraction of the relative abundances of short-range correlated (SRC) nucleon pairs from inclusive electron scattering is studied using the generalized contact formalism (GCF) with several nuclear interaction models. GCF calculations can reproduce the observed scaling of the cross-section ratios for nuclei relative to deuterium at high xB and large Q2, a2 = (σA/A)/(σd/2). In the nonrelativistic instant-form formulation, the calculation is very sensitive to the model parameters and only reproduces the data using parameters that are inconsistent with ab initio many-body calculations. Using a light-cone GCF formulation significantly decreases this sensitivity …


Consistency Checks For Two-Body Finite-Volume Matrix Elements: Conserved Currents And Bound States, Raúl A. Briceño, Christopher J. Monahan Jan 2021

Consistency Checks For Two-Body Finite-Volume Matrix Elements: Conserved Currents And Bound States, Raúl A. Briceño, Christopher J. Monahan

Physics Faculty Publications

We present a model-independent framework to determine finite-volume corrections of matrix elements of spatially separated current-current operators. We define these matrix elements in terms of Compton-like amplitudes, i.e., amplitudes coupling single-particle states via two current insertions. We show that the infrared behavior of these matrix elements is dominated by the single-particle pole, which is approximated by the elastic form factors of the lowest-lying hadron. Therefore, given lattice data on the relevant elastic form factors, the finite-volume effects can be estimated nonperturbatively and without recourse to effective field theories. For illustration purposes, we investigate the implications of the proposed formalism for …


Measurement Of Deeply Virtual Compton Scattering Off 4He With The Cebaf Large Acceptance Spectrometer At Jefferson Lab, Clas Collaboration, R. Dupré, Mohammad Hattawy, N. A. Batzell, Stephen Bültmann, Bayram Torayev, Moskov Amaryan, Dilini L. Bulumulla, M. Mayer, David C. Payette, Yelena Prok, Jiwan Poudel, Lawrence B. Weinstein, B. Yale, N. Zachariou, J. Zhang, Et Al. Jan 2021

Measurement Of Deeply Virtual Compton Scattering Off 4He With The Cebaf Large Acceptance Spectrometer At Jefferson Lab, Clas Collaboration, R. Dupré, Mohammad Hattawy, N. A. Batzell, Stephen Bültmann, Bayram Torayev, Moskov Amaryan, Dilini L. Bulumulla, M. Mayer, David C. Payette, Yelena Prok, Jiwan Poudel, Lawrence B. Weinstein, B. Yale, N. Zachariou, J. Zhang, Et Al.

Physics Faculty Publications

We report on the measurement of the beam spin asymmetry in the deeply virtual Compton scattering off 4He using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab using a 6 GeV longitudinally polarized electron beam incident on a pressurized 4He gaseous target. We detail the method used to ensure the exclusivity of the measured reactions, in particular the upgrade of CLAS with a radial time projection chamber to detect the low-energy recoiling 4He nuclei and an inner calorimeter to extend the photon detection acceptance at forward angles. Our results confirm the theoretically predicted enhancement of the …


Inclusive Electron Scattering And The Genie Neutrino Event Generator, A. Papadopoulou, A. Ashkenazi, S. Gardiner, M. Betancourt, S. Dytman, L. B. Weinstein, E. Piasetzky, F. Hauenstein, M. Khachatryan, S. Dolan, G. D. Megias, O. Hen Jan 2021

Inclusive Electron Scattering And The Genie Neutrino Event Generator, A. Papadopoulou, A. Ashkenazi, S. Gardiner, M. Betancourt, S. Dytman, L. B. Weinstein, E. Piasetzky, F. Hauenstein, M. Khachatryan, S. Dolan, G. D. Megias, O. Hen

Physics Faculty Publications

The extraction of neutrino mixing parameters from accelerator-based neutrino-oscillation experiments relies on proper modeling of neutrino-nucleus scattering processes using neutrino interaction event generators. Experimental tests of these generators are difficult due to the broad range of neutrino energies produced in accelerator-based beams and the low statistics of current experiments. Here we overcome these difficulties by exploiting the similarity of neutrino and electron interactions with nuclei to test neutrino event generators using high-precision inclusive electron-scattering data. To this end, we revised the electron-scattering mode of the genie event generator (e-GENIE) to include electron-nucleus bremsstrahlung radiation effects and to use, …


Simultaneous Monte Carlo Analysis Of Parton Densities And Fragmentation Functions, Eric Moffat, W. Melnitchouk, Ted C. Rogers, N. Sato, Jefferson Lab Angular Momentum Collaboration Jan 2021

Simultaneous Monte Carlo Analysis Of Parton Densities And Fragmentation Functions, Eric Moffat, W. Melnitchouk, Ted C. Rogers, N. Sato, Jefferson Lab Angular Momentum Collaboration

Physics Faculty Publications

We perform a comprehensive new Monte Carlo analysis of high-energy lepton-lepton, lepton-hadron and hadron-hadron scattering data to simultaneously determine parton distribution functions (PDFs) in the proton and parton to hadron fragmentation functions (FFs). The analysis includes all available semi-inclusive deep-inelastic scattering and single-inclusive e+e annihilation data for pions, kaons and unidentified charged hadrons, which allows the flavor dependence of the fragmentation functions to be constrained. Employing a new multistep fitting strategy and more flexible parametrizations for both PDFs and FFs, we assess the impact of different datasets on sea quark densities and confirm the previously observed suppression …


Laser Chirping In Inverse Compton Sources At High Electron Beam Energies And High Laser Intensities, Balŝa Terzić, Jeffrey Mckaig, Erik Johnson, Tabin Dharanikota, Geoffrey A. Krafft Jan 2021

Laser Chirping In Inverse Compton Sources At High Electron Beam Energies And High Laser Intensities, Balŝa Terzić, Jeffrey Mckaig, Erik Johnson, Tabin Dharanikota, Geoffrey A. Krafft

Physics Faculty Publications

The onset of nonlinear effects, such as ponderomotive broadening, increases the radiation bandwidth and thereby places a stringent limitation on the laser intensity used in inverse Compton sources. Recently, we have shown that a judicious longitudinal laser frequency modulation ("chirping") can perfectly compensate for this ponderomotive broadening and restore the narrow band property of scattered radiation in the Thomson regime, when electron recoil during the collision with the laser can be neglected. Consequently, using QED, the laser chirping has been extended to the Compton regime, where electron recoil is properly accounted for. Here we present a new, semiclassical model for …


Role Of Boundary Conditions In Quantum Computations Of Scattering Observables, Raúl A. Briceño, Juan V. Guerrero, Maxwell T. Hansen, Alexandru M. Sturzu Jan 2021

Role Of Boundary Conditions In Quantum Computations Of Scattering Observables, Raúl A. Briceño, Juan V. Guerrero, Maxwell T. Hansen, Alexandru M. Sturzu

Physics Faculty Publications

Quantum computing may offer the opportunity to simulate strongly interacting field theories, such as quantum chromodynamics, with physical time evolution. This would give access to Minkowski-signature correlators, in contrast to the Euclidean calculations routinely performed at present. However, as with present-day calculations, quantum computation strategies still require the restriction to a finite system size, including a finite, usually periodic, spatial volume. In this work, we investigate the consequences of this in the extraction of hadronic and Compton-like scattering amplitudes. Using the framework presented in Briceno et al. [Phys. Rev. D 101, 014509 (2020)], we estimate the volume effects for various …


Ruling Out Color Transparency In Quasielastic ¹²C(E,E'P) Up To Q² Of 14.2 (Gev/C)², D. Bhetuwal, J. Matter, H. Szumila-Vance, F. Hauenstein, C. Yero, J. Zhang, Et Al., Hall C. Collaboration Jan 2021

Ruling Out Color Transparency In Quasielastic ¹²C(E,E'P) Up To Q² Of 14.2 (Gev/C)², D. Bhetuwal, J. Matter, H. Szumila-Vance, F. Hauenstein, C. Yero, J. Zhang, Et Al., Hall C. Collaboration

Physics Faculty Publications

Quasielastic 12C(e,e'p) scattering was measured at spacelike 4-momentum transfer squared Q2 = 8, 9.4, 11.4, and 14.2 (GeV/c)2, the highest ever achieved to date. Nuclear transparency for this reaction was extracted by comparing the measured yield to that expected from a plane-wave impulse approximation calculation without any final state interactions. The measured transparency was consistent with no Q2 dependence, up to proton momenta of 8.5 GeV/c, ruling out the quantum chromodynamics effect of color transparency at the measured Q2 scales in exclusive (e, e'p) reactions. These results impose strict constraints on models of color …


Neural-Network Analysis Of Parton Distribution Functions From Ioffe-Time Pseudodistributions, Luigi Del Debbio, Tommaso Giani, Joseph Karpie, Kostas Orginos, Anatoly Radyushkin, Savvas Zafeiropoulos Jan 2021

Neural-Network Analysis Of Parton Distribution Functions From Ioffe-Time Pseudodistributions, Luigi Del Debbio, Tommaso Giani, Joseph Karpie, Kostas Orginos, Anatoly Radyushkin, Savvas Zafeiropoulos

Physics Faculty Publications

We extract two nonsinglet nucleon Parton Distribution Functions from lattice QCD data for reduced Ioffe-time pseudodistributions. We perform such analysis within the NNPDF framework, considering data coming from different lattice ensembles and discussing in detail the treatment of the different source of systematics involved in the fit. We introduce a recipe for taking care of systematics and use it to perform our extraction of light-cone PDFs.


Photoproduction Of The F₂(1270) Meson Using The Clas Detector, Krishna P. Adhikari, Moskov J. Amaryan, Dilini Bulumulla, Mohammad Hattawy, G. Gavalian, Charles E. Hyde, Yelena Prok, J. Zhang, Et Al., Clas Collaboration Jan 2021

Photoproduction Of The F₂(1270) Meson Using The Clas Detector, Krishna P. Adhikari, Moskov J. Amaryan, Dilini Bulumulla, Mohammad Hattawy, G. Gavalian, Charles E. Hyde, Yelena Prok, J. Zhang, Et Al., Clas Collaboration

Physics Faculty Publications

The quark structure of the f2(1270) meson has, for many years, been assumed to be a pure quark-antiquark (qq⁻) resonance with quantum numbers JPC = 2++. Recently, it was proposed that the f2(1270) is a molecular state made from the attractive interaction of two 𝜌 mesons. Such a state would be expected to decay strongly to final states with charged pions due to the dominant decay 𝜌 → π+π-, whereas decay to two neutral pions would likely be suppressed. Here, we measure for the first time the reaction 𝛾p …


Differential Cross Sections For Λ (1520) Using Photoproduction At Clas, K. P. Adhikari, M.J. Amaryan, G. Gavalian, M. Hattawy, Y. Prok, Et. Al., The Clas Collaboration Jan 2021

Differential Cross Sections For Λ (1520) Using Photoproduction At Clas, K. P. Adhikari, M.J. Amaryan, G. Gavalian, M. Hattawy, Y. Prok, Et. Al., The Clas Collaboration

Physics Faculty Publications

The reaction 𝛾p → K+Λ (1520) using photoproduction data from the CLAS g12 experiment at Jefferson Lab is studied. The decay of Λ(1520) into two exclusive channels, Σπ+π- and Σ-π+, is studied from the detected K+, π+, and π- particles. A good agreement is established for the Λ(1520) differential cross sections with the previous CLAS measurements. The differential cross sections as a function of center-of-mass angle are extended to higher photon energies. Newly added are the differential cross sections as a function of invariant four-momentum transfer t, …


Measurements Of Dihadron Correlations Relative To The Event Plane In Au Plus Au Collisions At √Snn= 200 Gev, H. Agakishiev, M. M. Aggarwal, Z. Ahammed, S. Bueltmann, I. Koralt, D. Plyku, Et Al., Star Collaboration Jan 2021

Measurements Of Dihadron Correlations Relative To The Event Plane In Au Plus Au Collisions At √Snn= 200 Gev, H. Agakishiev, M. M. Aggarwal, Z. Ahammed, S. Bueltmann, I. Koralt, D. Plyku, Et Al., Star Collaboration

Physics Faculty Publications

Dihadron azimuthal correlations containing a high transverse momentum (pT) trigger particle are sensitive to the properties of the nuclear medium created at RHIC through the strong interactions occurring between the traversing parton and the medium, i.e. jet-quenching. Previous measurements revealed a strong modification to dihadron azimuthal correlations in Au+Au collisions with respect to p+p and d+Au collisions. The modification increases with the collision centrality, suggesting a path-length or energy density dependence to the jet-quenching effect. This paper reports STAR measurements of dihadron azimuthal correlations in mid-central (20%-60%) Au+Au collisions at √sNN = 200 GeV as a function …


Measurement Of The Ar(E, E' P) And Ti(E, E' P) Cross Sections In Jefferson Lab Hall A, L. Gu, D. Abrams, A.M. Ankowski, L. Jiang, B. Aljawrneh, S. Alsalmi, F. Hauenstein, C. Hyde, Et Al., The Jefferson Lab Hall A. Collaboration Jan 2021

Measurement Of The Ar(E, E' P) And Ti(E, E' P) Cross Sections In Jefferson Lab Hall A, L. Gu, D. Abrams, A.M. Ankowski, L. Jiang, B. Aljawrneh, S. Alsalmi, F. Hauenstein, C. Hyde, Et Al., The Jefferson Lab Hall A. Collaboration

Physics Faculty Publications

The E12-14-012 experiment, performed in Jefferson Lab Hall A, has collected exclusive electron-scattering data (e, e'p) in parallel kinematics using natural argon and natural titanium targets. Here we report the first results of the analysis of the data set corresponding to beam energy 2222 GeV, electron scattering angle 21.5 degrees, and proton emission angle -50°. The differential cross sections, measured with ≈ 4% uncertainty, have been studied as a function of missing energy and missing momentum, and compared to the results of Monte Carlo simulations, obtained from a model based on the distorted-wave impulse approximation.


B-Meson Ioffe-Time Distribution Amplitude At Short Distances, Shuai Zhao, Anatoly V. Radyushkin Jan 2021

B-Meson Ioffe-Time Distribution Amplitude At Short Distances, Shuai Zhao, Anatoly V. Radyushkin

Physics Faculty Publications

We propose the approach for a lattice investigation of light cone distribution amplitudes (LCDA) of heavy-light mesons, such as the B meson, using the formalism of parton pseudodistributions. A basic ingredient of the approach is the study of short-distance behavior of the B-meson Ioffe-time distribution amplitude (ITDA), which is a generalization of the B-meson LCDA in coordinate space. We construct a reduced ITDA for the B meson, and derive the matching relation between the reduced ITDA and the LCDA. The reduced ITDA is ultraviolet finite, which guarantees that the continuum limit exists on the lattice.


Experimental Tests Of Qcd Scaling Laws At Large Momentum Transfer In Exclusive Light-Meson Photoproduction, Moskov J. Amaryan, William J. Briscoe, Michael G. Ryskin, Igor I. Strakovsky Jan 2021

Experimental Tests Of Qcd Scaling Laws At Large Momentum Transfer In Exclusive Light-Meson Photoproduction, Moskov J. Amaryan, William J. Briscoe, Michael G. Ryskin, Igor I. Strakovsky

Physics Faculty Publications

We evaluated CLAS Collaboration measurements for the 90 meson photoproduction off the nucleon using a tagged photon beam spanning the energy interval s = 3–11 GeV2. The results are compared with the “quark counting rules” predictions.


On-Shell Representations Of Two-Body Transition Amplitudes: Single External Current, Raúl A. Briceño, Andrew W. Jackura, Felipe G. Ortega-Gama, Keegan H. Sherman Jan 2021

On-Shell Representations Of Two-Body Transition Amplitudes: Single External Current, Raúl A. Briceño, Andrew W. Jackura, Felipe G. Ortega-Gama, Keegan H. Sherman

Physics Faculty Publications

This work explores scattering amplitudes that couple two-particle systems via a single external current insertion, 2 + J → 2. Such amplitudes can provide structural information about the excited QCD spectrum. We derive an exact analytic representation for these reactions. From these amplitudes, we show how to rigorously define resonance and bound-state form factors. Furthermore, we explore the consequences of the narrow-width limit of the amplitudes as well as the role of the Ward-Takahashi identity for conserved vector currents. These results hold for any number of two-body channels with no intrinsic spin, and a current with arbitrary Lorentz structure and …


Solving Relativistic Three-Body Integral Equations In The Presence Of Bound States, Andrew W. Jackura, Raúl A. Briceño, Sebastian M. Dawid, Md. Habib E. Islam, Connor Mccarty Jan 2021

Solving Relativistic Three-Body Integral Equations In The Presence Of Bound States, Andrew W. Jackura, Raúl A. Briceño, Sebastian M. Dawid, Md. Habib E. Islam, Connor Mccarty

Physics Faculty Publications

We present a simple scheme for solving relativistic integral equations for the partial-wave projected three-body amplitudes. Our techniques are used to solve a problem of three scalar particles with a formation of a S-wave two-body bound state. We rewrite the problem in a form suitable for numerical solution and then explore three solving strategies. In particular, we discuss different ways of incorporating the bound-state pole contribution in the integral equations. All of them lead to agreement with previous results obtained using finite-volume spectra of the same theory, providing further evidence of the validity of the existing finite- and infinite-volume formalism …


Drell-Yan Angular Lepton Distributions At Small X From Tmd Factorization, Ian Balitsky Jan 2021

Drell-Yan Angular Lepton Distributions At Small X From Tmd Factorization, Ian Balitsky

Physics Faculty Publications

The Drell-Yan process is studied in the framework of TMD factorization in the Sudakov region s » Q2 » q2 corresponding to recent LHC experiments with Q2 of order of mass of Z-boson and transverse momentum of DY pair ∼ few tens GeV. The DY hadronic tensors are expressed in terms of quark and quark-gluon TMDs with 1Q2 and 1Nc2 accuracy. It is demonstrated that in the leading order in Nc the higher-twist quark-quark-gluon TMDs reduce to leading-twist TMDs due to QCD equation of motion. The resulting hadronic tensors depend on …


Constraining 1 + 𝒥 → 2 Coupled-Channel Amplitudes In A Finite Volume, Raúl A. Briceño, Jozef J. Dudek, Luka Leskovec Jan 2021

Constraining 1 + 𝒥 → 2 Coupled-Channel Amplitudes In A Finite Volume, Raúl A. Briceño, Jozef J. Dudek, Luka Leskovec

Physics Faculty Publications

Whether one is interested in accessing the excited spectrum of hadrons or testing the standard model of particle physics, electroweak transition processes involving multihadron channels in the final state play an important role in a variety of experiments. Presently the primary theoretical tool with which one can study such reactions is lattice QCD, which is defined in a finite spacetime volume. In this work, we investigate the feasibility of implementing existing finite-volume formalism in realistic lattice QCD calculation of reactions in which a stable hadron can transition to one of several two-hadron channels under the action of an external current. …


One-Loop Structure Of Parton Distribution For The Gluon Condensate And "Zero Modes", Anatoly Radyushkin, Shuai Zhao Jan 2021

One-Loop Structure Of Parton Distribution For The Gluon Condensate And "Zero Modes", Anatoly Radyushkin, Shuai Zhao

Physics Faculty Publications

We present results for one-loop corrections to the recently introduced “gluon condensate” PDF F(x). In particular, we give expression for the gg-part of its evolution kernel. To enforce strict compliance with the gauge invariance requirements, we have used on-shell states for external gluons, and have obtained identical results both in Feynman and light-cone gauges. No “zero mode” δ(x) terms were found for the twist-4 gluon PDF F(x). However a q2δ(x) term was found for the ξ = 0 GPD F(x, q2) at nonzero momentum transfer q. Overall, our results do not agree with the original attempt …


The Continuum And Leading Twist Limits Of Parton Distribution Functions In Lattice Qcd, Joseph Karpie, Kostas Orginos, Anatoly Radyushkin, Savvas Zafeiropoulos, For The Hadstruc Collaboration Jan 2021

The Continuum And Leading Twist Limits Of Parton Distribution Functions In Lattice Qcd, Joseph Karpie, Kostas Orginos, Anatoly Radyushkin, Savvas Zafeiropoulos, For The Hadstruc Collaboration

Physics Faculty Publications

In this study, we present continuum limit results for the unpolarized parton distribution function of the nucleon computed in lattice QCD. This study is the first continuum limit using the pseudo-PDF approach with Short Distance Factorization for factorizing lattice QCD calculable matrix elements. Our findings are also compared with the pertinent phenomenological determinations. Inter alia, we are employing the summation Generalized Eigenvalue Problem (sGEVP) technique in order to optimize our control over the excited state contamination which can be one of the most serious systematic errors in this type of calculations. A crucial novel ingredient of our analysis is the …


Towards High-Precision Parton Distributions From Lattice Qcd Via Distillation, Colin Egerer, Robert G. Edwards, Christos Kallidonis, Kostas Orginos, Anatoly V. Radyushkin, David G. Richards, Eloy Romero, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration Jan 2021

Towards High-Precision Parton Distributions From Lattice Qcd Via Distillation, Colin Egerer, Robert G. Edwards, Christos Kallidonis, Kostas Orginos, Anatoly V. Radyushkin, David G. Richards, Eloy Romero, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration

Physics Faculty Publications

We apply the Distillation spatial smearing program to the extraction of the unpolarized isovector valence PDF of the nucleon. The improved volume sampling and control of excited-states afforded by distillation leads to a dramatically improved determination of the requisite Ioffe-time Pseudo-distribution (pITD). The impact of higher-twist effects is subsequently explored by extending the Wilson line length present in our non-local operators to one half the spatial extent of the lattice ensemble considered. The valence PDF is extracted by analyzing both the matched Ioffe-time Distribution (ITD), as well as a direct matching of the pITD to the PDF. Through development of …


Unpolarized Gluon Distribution In The Nucleon From Lattice Quantum Chromodynamics, Tanjib Khan, Raza Sabbir Sufian, Joseph Karpie, Christopher J. Monahan, Colin Egerer, Bálint Joó, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration Jan 2021

Unpolarized Gluon Distribution In The Nucleon From Lattice Quantum Chromodynamics, Tanjib Khan, Raza Sabbir Sufian, Joseph Karpie, Christopher J. Monahan, Colin Egerer, Bálint Joó, Wayne Morris, Kostas Orginos, Anatoly Radyushkin, David G. Richards, Eloy Romero, Savvas Zafeiropoulos, On Behalf Of The Hadstruc Collaboration

Physics Faculty Publications

In this study, we present a determination of the unpolarized gluon Ioffe-time distribution in the nucleon from a first principles lattice quantum chromodynamics calculation. We carry out the lattice calculation on a 323 × 64 ensemble with a pion mass of 358 MeV and lattice spacing of 0.094 fm. We construct the nucleon interpolating fields using the distillation technique, flow the gauge fields using the gradient flow, and solve the summed generalized eigenvalue problem to determine the gluonic matrix elements. Combining these techniques allows us to provide a statistically well-controlled Ioffe-time distribution and unpolarized gluon parton distribution function. We …


Energy-Dependent Π⁺Π⁺Π⁺ Scattering Amplitude From Qcd, Maxwell T. Hansen, Raúl A. Briceño, Robert G. Edwards, Christopher E. Thomas, David J. Wilson Jan 2021

Energy-Dependent Π⁺Π⁺Π⁺ Scattering Amplitude From Qcd, Maxwell T. Hansen, Raúl A. Briceño, Robert G. Edwards, Christopher E. Thomas, David J. Wilson

Physics Faculty Publications

Focusing on three-pion states with maximal isospin π⁺π⁺π⁺, we present the first nonperturbative determination of an energy-dependent three-hadron scattering amplitude from first-principles QCD. The calculation combines finite-volume three-hadron energies, extracted using numerical lattice QCD, with a relativistic finite-volume formalism, required to interpret the results. To fully implement the latter, we also solve integral equations that relate an intermediate three-body K matrix to the physical three-hadron scattering amplitude. The resulting amplitude shows rich analytic structure and a complicated dependence on the two-pion invariant masses, represented here via Dalitz-like plots of the scattering rate.


Gauge-Invariant Tmd Factorization For Drell-Yan Hadronic Tensor At Small X, Ian Balitsky Jan 2021

Gauge-Invariant Tmd Factorization For Drell-Yan Hadronic Tensor At Small X, Ian Balitsky

Physics Faculty Publications

The Drell-Yan hadronic tensor for electromagnetic (EM) current is calculated in the Sudakov region s ≫ Q2 ≫q2 with 1Q² accuracy, first at the tree level and then with the double-log accuracy. It is demonstrated that in the leading order in Nc the higher-twist quark-quark-gluon TMDs reduce to leading-twist TMDs due to QCD equation of motion. The resulting tensor for unpolarized hadrons is EM gauge-invariant and depends on two leading-twist TMDs: f1 responsible for total DY cross section, and Boer-Mulders function h1. The order-of-magnitude estimates of angular distributions for DY …


P-Wave Nucleon-Pion Scattering Amplitude In The Δ(1232) Channel From Lattice Qcd, Giorgio Silvi, Srijit Paul, Constantia Alexandrou, Stefan Krieg, Luka Leskovec, Stefan Meinel, John Negele, Marcus Petschlies, Andrew Pochinsky, Gumaro Rendon, Sergey Syritsyn, Antonio Todaro Jan 2021

P-Wave Nucleon-Pion Scattering Amplitude In The Δ(1232) Channel From Lattice Qcd, Giorgio Silvi, Srijit Paul, Constantia Alexandrou, Stefan Krieg, Luka Leskovec, Stefan Meinel, John Negele, Marcus Petschlies, Andrew Pochinsky, Gumaro Rendon, Sergey Syritsyn, Antonio Todaro

Physics Faculty Publications

We determine the Δ(1232) resonance parameters using lattice QCD and the Lüscher method. The resonance occurs in elastic pion-nucleon scattering with JP = 3/2+ in the isospin I=3/2, P-wave channel. Our calculation is performed with Nf = 2+1 flavors of clover fermions on a lattice with L ≈ 2.8 fm. The pion and nucleon masses are mπ = 255.4 (1.6) MeV and mN = 1073(5) MeV, respectively, and the strong decay channel Δ → πN is found to be above the threshold. To thoroughly map out the energy dependence of the nucleon-pion …