Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Physical Sciences and Mathematics

Generalized Parton Distributions And Pseudodistributions, Anatoly V. Radyushkin Dec 2019

Generalized Parton Distributions And Pseudodistributions, Anatoly V. Radyushkin

Physics Faculty Publications

We derive one-loop matching relations for the Ioffe-time distributions (ITDs) related to the pion distribution amplitude (DA) and generalized parton distributions (GPDs). They are obtained from a universal expression for the one-loop correction in an operator form, and will be used in the ongoing lattice calculations of the pion DA and GPDs within the parton pseudodistributions approach.


Parton Distribution Functions From Loffe Time Pseudo-Distributions, Bálint Joó, Joseph Karpie, Kostas Orginos, Anatoly V. Radyushkin, David Richards, Savvas Zafeiropoulos Dec 2019

Parton Distribution Functions From Loffe Time Pseudo-Distributions, Bálint Joó, Joseph Karpie, Kostas Orginos, Anatoly V. Radyushkin, David Richards, Savvas Zafeiropoulos

Physics Faculty Publications

In this paper, we present a detailed study of the unpolarized nucleon parton distribution function (PDF) employing the approach of parton pseudo-distribution functions. We perform a systematic analysis using three lattice ensembles at two volumes, with lattice spacings a = 0.127 fm and a = 0.094 fm, for a pion mass of roughly 400 MeV. With two lattice spacings and two volumes, both continuum limit and infinite volume extrapolation systematic errors of the PDF are considered. In addition to the x dependence of the PDF, we compute their first two moments and compare them with the pertinent phenomenological determinations.


Pion Valence Structure From Ioffe-Time Parton Pseudodistribution Functions, Bálint Joó, Joseph Karpie, Kostas Orinos, Anatoly V. Radyushkin, David G. Richards, Raza Sabbir Sufian, Savvas Zafeiropoulos Dec 2019

Pion Valence Structure From Ioffe-Time Parton Pseudodistribution Functions, Bálint Joó, Joseph Karpie, Kostas Orinos, Anatoly V. Radyushkin, David G. Richards, Raza Sabbir Sufian, Savvas Zafeiropoulos

Physics Faculty Publications

We present a calculation of the pion valence quark distribution extracted using the formalism of reduced Ioffe-time pseudodistributions or more commonly known as pseudo-PDFs. Our calculation is carried out on two different 2 + 1 flavor QCD ensembles using the isotropic-clover fermion action, with lattice dimensions 243 × 64 and 323 × 96 at the lattice spacing of a = 0.127 fm, and with the quark mass equivalent to a pion mass of mπ ≃ 415 MeV. We incorporate several combinations of smeared-point and smeared-smeared pion source-sink interpolation fields in obtaining the lattice QCD matrix elements using …


Collinear Factorization In Wide-Angle Hadron Pair Production In E + E − Annihilation, E. Moffat, T. C. Rogers, N. Sato, A. Signori Nov 2019

Collinear Factorization In Wide-Angle Hadron Pair Production In E + E − Annihilation, E. Moffat, T. C. Rogers, N. Sato, A. Signori

Physics Faculty Publications

We compute the inclusive unpolarized dihadron production cross section in the far from back-to-back region of e+ e− annihilation in leading order pQCD using existing fragmentation function fits and standard collinear factorization, focusing on the large transverse momentum region where transverse momentum is comparable to the hard scale (the center-of-mass energy). We compare with standard transverse-momentum-dependent (TMD) fragmentation function-based predictions intended for the small transverse momentum region with the aim of testing the expectation that the two types of calculation roughly coincide at intermediate transverse momentum. We find significant tension, within the intermediate transverse momentum region, between calculations done with …


Numerical Exploration Of Three Relativistic Particles In A Finite Volume Including Two-Particle Resonances And Bound States, Fernando Romero-López, Stephen R. Sharpe, Tyler D. Blanton, Raúl A. Briceño, Maxwell T. Hansen Oct 2019

Numerical Exploration Of Three Relativistic Particles In A Finite Volume Including Two-Particle Resonances And Bound States, Fernando Romero-López, Stephen R. Sharpe, Tyler D. Blanton, Raúl A. Briceño, Maxwell T. Hansen

Physics Faculty Publications

In this work, we use an extension of the quantization condition, given in ref. [1], to numerically explore the finite-volume spectrum of three relativistic particles, in the case that two-particle subsets are either resonant or bound. The original form of the relativistic three-particle quantization condition was derived under a technical assumption on the two-particle K matrix that required the absence of two-particle bound states or narrow two-particle resonances. Here we describe how this restriction can be lifted in a simple way using the freedom in the definition of the K-matrix-like quantity that enters the quantization condition. With this in hand, …


Three-Particle Systems With Resonant Subprocesses In A Finite Volume, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe Jan 2019

Three-Particle Systems With Resonant Subprocesses In A Finite Volume, Raúl A. Briceño, Maxwell T. Hansen, Stephen R. Sharpe

Physics Faculty Publications

In previous work, we have developed a relativistic, model-independent three-particle quantization condition, but only under the assumption that no poles are present in the two-particle K matrices that appear as scattering subprocesses [M. T. Hansen and S. R. Sharpe, Phys. Rev. D 90, 116003 (2014); M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509 (2015); R. A. Briceño et al., Phys. Rev. D 95, 074510 (2017).]. Here we lift this restriction, by deriving the quantization condition for identical scalar particles with a G-parity symmetry, in the case that the two-particle K matrix has a pole in the …


Exploring The Structure Of The Bound Proton With Deeply Virtual Compton Scattering, M. Hattawy, N. A. Baltzell, R. Dupré, S. Bültmann, B. Torayev, G. Gavalian, F. Hauenstein, S. E. Kuhn, M. Khachatryan, M. Mayer, J. Poudel, Y. Prok, L. B. Weinstein, J. Zhang, Z. W. Zhao, Clas Collaboration Jan 2019

Exploring The Structure Of The Bound Proton With Deeply Virtual Compton Scattering, M. Hattawy, N. A. Baltzell, R. Dupré, S. Bültmann, B. Torayev, G. Gavalian, F. Hauenstein, S. E. Kuhn, M. Khachatryan, M. Mayer, J. Poudel, Y. Prok, L. B. Weinstein, J. Zhang, Z. W. Zhao, Clas Collaboration

Physics Faculty Publications

In the past two decades, deeply virtual Compton scattering of electrons has been successfully used to advance our knowledge of the partonic structure of the free proton and investigate correlations between the transverse position and the longitudinal momentum of quarks inside the nucleon. Meanwhile, the structure of bound nucleons in nuclei has been studied in inclusive deep-inelastic lepton scattering experiments off nuclear targets, showing a significant difference in longitudinal momentum distribution of quarks inside the bound nucleon, known as the EMC effect. In this Letter, we report the first beam spin asymmetry (BSA) measurement of exclusive deeply virtual Compton scattering …


Polarized Hyperon Production In Single-Inclusive Electron Positron Annihilation At Next-To-Leading Order, Leonard Gamberg, Zhong-Bo Kang, Daniel Pitonyak, Marc Schlegel, Shinsuke Yoshida Jan 2019

Polarized Hyperon Production In Single-Inclusive Electron Positron Annihilation At Next-To-Leading Order, Leonard Gamberg, Zhong-Bo Kang, Daniel Pitonyak, Marc Schlegel, Shinsuke Yoshida

Physics Faculty Publications

We study the production of polarized A-hyperons in electron-positron annihilation. We are particularly interested in the transverse-spin dependence of the cross section for unpolarized incident electron-positron pairs. At high energies this process may be described in the collinear twist-3 framework, where the hadronization transition of partons into a transversely polarized -hyperon can be written in terms of collinear twist-3 fragmentation matrix elements. We calculate the hard partonic cross sections and interference terms in perturbative QCD to next-to-leading order accuracy. We find that the QCD equation of motion plays a crucial role in our analysis. As a byproduct, assuming the validity …


Quark-Mass Dependence Of Elastic Πk Scattering From Qcd, David J. Wilson, Raúl A. Briceño, Jozef K. Dudek, Robert G. Edwards, Christopher E. Thomas Jan 2019

Quark-Mass Dependence Of Elastic Πk Scattering From Qcd, David J. Wilson, Raúl A. Briceño, Jozef K. Dudek, Robert G. Edwards, Christopher E. Thomas

Physics Faculty Publications

We present a determination of the isospin-1/2 elastic πK scattering amplitudes in S and P partial waves using lattice quantum chromodynamics. The amplitudes, constrained for a large number of real-valued energy points, are obtained as a function of light-quark mass, corresponding to four pion masses between 200 and 400 MeV, at a single lattice spacing. Below the first inelastic threshold, the P-wave scattering amplitude is dominated by a single pole singularity that evolves from being a stable bound state at the highest quark mass into a narrow resonance that broadens as the pion and kaon masses are reduced. As in …


Finite Volume Matrix Elements Of Two-Body States, Alessandro Baroni, Raúl A. Briceño, Maxwell T. Hansen, Filipe G. Ortega-Gama Jan 2019

Finite Volume Matrix Elements Of Two-Body States, Alessandro Baroni, Raúl A. Briceño, Maxwell T. Hansen, Filipe G. Ortega-Gama

Physics Faculty Publications

In this talk, we present a framework for studying structural information of resonances and bound states coupling to two-hadron scattering states. This makes use of a recently proposed finite-volume formalism to determine a class of observables that are experimentally inaccessible but can be accessed via lattice QCD. In particular, we shown that finite-volume two-body matrix elements with one current insertion can be directly related to scattering amplitudes coupling to the external current. For two-hadron systems with resonances or bound states, one can extract the corresponding form factors of these from the energy-dependence of the amplitudes.


Progress Report On The Relativistic Three-Particle Quantization Condition, Tyler D. Blanton, Raúl A. Briceño, Maxwell T. Hanson, Fernando Romero-Lopez, Stephen R. Sharpe Jan 2019

Progress Report On The Relativistic Three-Particle Quantization Condition, Tyler D. Blanton, Raúl A. Briceño, Maxwell T. Hanson, Fernando Romero-Lopez, Stephen R. Sharpe

Physics Faculty Publications

We describe recent work on the relativistic three-particle quantization condition, generalizing and applying the original formalism of Hansen and Sharpe, and of Briceño, Hansen and Sharpe. In particular, we sketch three recent developments: the generalization of the formalism to include K-matrix poles; the numerical implementation of the quantization condition in the isotropic approximation; and ongoing work extending the description of the three-particle divergence-free K matrix beyond the isotropic approximation.


Pdfs In Small Boxes, Raúl A. Briceño, Juan V. Guerrero, Maxwell T. Hansen, Christopher J. Monahan Jan 2019

Pdfs In Small Boxes, Raúl A. Briceño, Juan V. Guerrero, Maxwell T. Hansen, Christopher J. Monahan

Physics Faculty Publications

PDFs can be studied directly using lattice QCD by evaluating matrix elements of non-local operators. A number of groups are pursuing numerical calculations and investigating possible systematic uncertainties. One systematic that has received less attention is the effect of calculating in a finite spacetime volume. Here we present first attempts to assess the role of the finite volume for spatially non-local operators. We find that these matrix elements may suffer from large finite-volume artifacts and more careful investigation is needed.


The Us Electron Ion Collider Accelerator Designs, A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Brucker, A. Camsonne, E. Daly, P.V. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, R.C. York, Et Al. Jan 2019

The Us Electron Ion Collider Accelerator Designs, A. Seryi, S.V. Benson, S.A. Bogacz, P.D. Brindza, M.W. Brucker, A. Camsonne, E. Daly, P.V. Degtiarenko, Y.S. Derbenev, M. Diefenthaler, J. Dolbeck, R. Ent, R. Fair, D. Fazenbaker, Y. Furletova, B.R. Gamage, D. Gaskell, R.L. Geng, P. Ghoshal, R.C. York, Et Al.

Physics Faculty Publications

With the completion of the National Academies of Sciences Assessment of a US Electron-Ion Collider, the prospects for construction of such a facility have taken a step forward. This paper provides an overview of the two site-specific EIC designs: JLEIC (Jefferson Lab) and eRHIC (BNL) as well as brief overview of ongoing EIC R&D.


Question 1: Goosed; Question 2: Buying Groceries, Larry Weinstein Jan 2019

Question 1: Goosed; Question 2: Buying Groceries, Larry Weinstein

Physics Faculty Publications

The article presents two questions related to fermi which include injury of a celebrity colliding with a goose in the Apollo's Chariot roller coaster; and cost to purchase the contents of local large supermarket.


Finite Volume Matrix Elements Of Two-Body States With One Current Insertion, Alessandro Baroni, Raúl Briceño, Maxwell Hansen, Felipe Ortega Jan 2019

Finite Volume Matrix Elements Of Two-Body States With One Current Insertion, Alessandro Baroni, Raúl Briceño, Maxwell Hansen, Felipe Ortega

Physics Faculty Publications

No abstract provided.