Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Analyzing Major Challenges Of Wind And Solar Variability In Power Systems, Falko Ueckerdt, Robert Brecha, Gunnar Luderer Sep 2015

Analyzing Major Challenges Of Wind And Solar Variability In Power Systems, Falko Ueckerdt, Robert Brecha, Gunnar Luderer

Physics Faculty Publications

Ambitious policy targets together with current and projected high growth rates indicate that future power systems will likely show substantially increased generation from renewable energy sources. A large share will come from the variable renewable energy (VRE) sources wind and solar photovoltaics (PV); however, integrating wind and solar causes challenges for existing power systems. In this paper we analyze three major integration challenges related to the structural matching of demand with the supply of wind and solar power: low capacity credit, reduced utilization of dispatchable plants, and over-produced generation. Based on residual load duration curves we define corresponding challenge variables …


Infographics And Mathematics: A Mechanism For Effective Learning In The Classroom, Ivan Sudakov, Thomas Bellsky, Svetlana Usenyuk, Victoria V. Polyakova Aug 2015

Infographics And Mathematics: A Mechanism For Effective Learning In The Classroom, Ivan Sudakov, Thomas Bellsky, Svetlana Usenyuk, Victoria V. Polyakova

Physics Faculty Publications

This work discusses the creation and use of infographies in an undergraduate mathematics course. Infographies are a visualization of information combining data, formulas, and images. This article discusses how to form an infographic and uses infographics on topics within mathematics and climate as examples. It concludes with survey data from undergraduate students on both the general use of infographics and on the specific infographics designed by the authors.


Resonant 𝜋⁺𝜸 → 𝜋⁺𝜋⁰ Amplitude From Quantum Chromodynamics, Raúl A. Briceño, Jozef J. Dudek, Robert G. Edwards, Christian J. Shultz, Christopher E. Thomas, David J. Wilson Jan 2015

Resonant 𝜋⁺𝜸 → 𝜋⁺𝜋⁰ Amplitude From Quantum Chromodynamics, Raúl A. Briceño, Jozef J. Dudek, Robert G. Edwards, Christian J. Shultz, Christopher E. Thomas, David J. Wilson

Physics Faculty Publications

We present the first ab initio calculation of a radiative transition of a hadronic resonance within quantum chromodynamics (QCD). We compute the amplitude for 𝜋𝜋→𝜋𝜸, as a function of the energy of the 𝜋𝜋 pair and the virtuality of the photon, in the kinematic regime where 𝜋𝜋 couples strongly to the unstable ρ resonance. This exploratory calculation is performed using a lattice discretization of QCD with quark masses corresponding to mπ ≈ 400  MeV. We obtain a description of the energy dependence of the transition amplitude, constrained at 48 kinematic points, that we can analytically continue …


Nlo Evolution Of 3-Quark Wilson Loop Operator, I. Balitsky, A. V. Grabovsky Jan 2015

Nlo Evolution Of 3-Quark Wilson Loop Operator, I. Balitsky, A. V. Grabovsky

Physics Faculty Publications

It is well known that the high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to the fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-line operator with respect to the rapidity of the Wilson lines. We calculated the evolution of the 3-quark Wilson loop operator …


Transverse Momentum Dependent (Tmd) Parton Distribution Functions: Status And Prospects, R. Angeles-Martinez, A. Bacchetta, I. I. Balitsky, D. Boer, M. Boglione, R. Boussarie, F. A. Ceccopieri, I. O. Cherednikov, P. Connor, M. G. Echevarria, G. Ferrera, J. Grados Luyando, F. Hautmann, H. Jung, T. Kasemets, K. Kutak, J. P. Lansberg, A. Lelek, G. Lykasov, J. D. Madrigal Martinez, P. J. Mulders, E. R. Nocera, E. Petreska, C. Pisano, R. Plaċakyte, V. Radescu, M. Radici, G. Schnell, I. Scimemi, A. Signori, L. Szymanowski, S. Taheri Monfared, F.F. Van Der Veken, H. J. Van Haevermaet, P. Van Mechelen, A. A. Vladimirov, S. Wallon Jan 2015

Transverse Momentum Dependent (Tmd) Parton Distribution Functions: Status And Prospects, R. Angeles-Martinez, A. Bacchetta, I. I. Balitsky, D. Boer, M. Boglione, R. Boussarie, F. A. Ceccopieri, I. O. Cherednikov, P. Connor, M. G. Echevarria, G. Ferrera, J. Grados Luyando, F. Hautmann, H. Jung, T. Kasemets, K. Kutak, J. P. Lansberg, A. Lelek, G. Lykasov, J. D. Madrigal Martinez, P. J. Mulders, E. R. Nocera, E. Petreska, C. Pisano, R. Plaċakyte, V. Radescu, M. Radici, G. Schnell, I. Scimemi, A. Signori, L. Szymanowski, S. Taheri Monfared, F.F. Van Der Veken, H. J. Van Haevermaet, P. Van Mechelen, A. A. Vladimirov, S. Wallon

Physics Faculty Publications

We review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum qT spectra of Higgs and vector bosons for low qT, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMDLIB, to parton density fits and parameterizations.