Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Two-Level Atom In An Optical Parametric Oscillator: Spectra Of Transmitted And Fluorescent Fields In The Weak Driving Field Limit, James P. Clemens, Perry R. Rice, Pranaw Kumar Rungta, Robert J. Brecha Aug 2000

Two-Level Atom In An Optical Parametric Oscillator: Spectra Of Transmitted And Fluorescent Fields In The Weak Driving Field Limit, James P. Clemens, Perry R. Rice, Pranaw Kumar Rungta, Robert J. Brecha

Physics Faculty Publications

We consider the interaction of a two-level atom inside an optical parametric oscillator. In the weak-driving-field limit, we essentially have an atom-cavity system driven by the occasional pair of correlated photons, or weakly squeezed light. We find that we may have holes, or dips, in the spectrum of the fluorescent and transmitted light. This occurs even in the strong-coupling limit when we find holes in the vacuum-Rabi doublet. Also, spectra with a subnatural linewidth may occur. These effects disappear for larger driving fields, unlike the spectral narrowing obtained in resonance fluorescence in a squeezed vacuum; here it is important that …


Renormalons As Dilation Modes In The Functional Space, A. Babansky, I. Balitsky Jan 2000

Renormalons As Dilation Modes In The Functional Space, A. Babansky, I. Balitsky

Physics Faculty Publications

There are two possible sources of the factorial large-order behavior of a typical perturbative series. First, the number of different Feynman diagrams may be large; second, there may be abnormally large diagrams known as renormalons. It is well known that the large combinatorial number of diagrams is described by instanton-type solutions of the classical equations. We demonstrate that, from the functional-integral viewpoint, the renormalons do not correspond to a particular configuration but manifest themselves as dilatation modes in the functional space.


High Energy Effective Action From Scattering Of Shock Waves In Qcd, Ian Balitsky Jan 2000

High Energy Effective Action From Scattering Of Shock Waves In Qcd, Ian Balitsky

Physics Faculty Publications

The author demonstrates that the amplitude for high-energy scattering can be factorized as a convolution of the contributions due to fast and slow fields. The fast and slow fields interact by means of Wilson-line operators -- infinite gauge factors ordered along the straight line. The resulting factorization formula gives a starting point for a new approach to the effective action for high-energy scattering in QCD.


Deeply Virtual Compton Scattering At Small X, Ian Balitsky, Elena Kuchina Jan 2000

Deeply Virtual Compton Scattering At Small X, Ian Balitsky, Elena Kuchina

Physics Faculty Publications

We calculate the cross section of deeply virtual Compton scattering at large energies and intermediate momentum transfers.