Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Improvised Centrifugal Spinning For The Production Of Polystyrene Microfibers From Waste Expanded Polystyrene Foam And Its Potential Application For Oil Adsorption, Marco Laurence M. Budlayan, Jonathan N. Patricio, Jeanne Phyre B. Lagare, Susan D. Arco, Arnold C. Alguno, Antonio M. Basilio, Felmer S. Latayada, Rey Y. Capangpangan Nov 2021

Improvised Centrifugal Spinning For The Production Of Polystyrene Microfibers From Waste Expanded Polystyrene Foam And Its Potential Application For Oil Adsorption, Marco Laurence M. Budlayan, Jonathan N. Patricio, Jeanne Phyre B. Lagare, Susan D. Arco, Arnold C. Alguno, Antonio M. Basilio, Felmer S. Latayada, Rey Y. Capangpangan

Physics Faculty Publications

A straightforward approach to recycle waste expanded polystyrene (EPS) foam to produce polystyrene (PS) microfibers using the improvised centrifugal spinning technique is demonstrated in this work. A typical benchtop centrifuge was improvised and used as a centrifugal spinning device. The obtained PS microfibers were characterized for their potential application for oil adsorption. Fourier transform infrared spectroscopy results revealed similarity on the transmission bands of EPS foam and PS microfibers suggesting the preservation of the EPS foam’s chemical composition after the centrifugal spinning process. Scanning electron microscopy displayed well-defined fibers with an average diameter of 3.14 ± 0.59 μm. At the …


Effect Of Random Pinning On Nonlinear Dynamics And Dissipation Of A Vortex Driven By A Strong Microwave Current, W.P.M.R. Pathirana, Alex Gurevich Jan 2021

Effect Of Random Pinning On Nonlinear Dynamics And Dissipation Of A Vortex Driven By A Strong Microwave Current, W.P.M.R. Pathirana, Alex Gurevich

Physics Faculty Publications

We report numerical simulations of a trapped elastic vortex driven by a strong ac magnetic field H(t)=Hsinωt parallel to the surface of a superconducting film. The surface resistance and the power dissipated by an oscillating vortex perpendicular to the film surface were calculated as functions of H and ω for different spatial distributions, densities, and strengths of pinning centers, including bulk pinning, surface pinning, and cluster pinning. Our simulations were performed for both the Bardeen-Stephen viscous vortex drag and the Larkin-Ovchinnikov (LO) drag coefficient η(v) decreasing with the vortex velocity v. The local residual surface resistance Ri(H) …