Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Physical Sciences and Mathematics

Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, Iresha Harshani Senevirathne, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano Jan 2022

Magnetic Field Penetration Technique To Study Field Shielding Of Multilayered Superconductors, Iresha Harshani Senevirathne, Alex Gurevich, Jean R. Delayen, A-M Valente-Feliciano

Physics Faculty Publications

The SIS structure which consists of alternative thin layers of superconductors and insulators on a bulk niobium has been proposed to shield niobium cavity surface from high magnetic field and hence increase the accelerating gradient. The study of the behavior of multilayer superconductors in an external magnetic field is essential to optimize their SRF performance. In this work we report the development of a simple and efficient technique to measure penetration of magnetic field into bulk, thin film and multilayer superconductors. Experimental setup contains a small superconducting solenoid which can produce a parallel surface magnetic field up to 0.5 T …


Effect Of Random Pinning On Nonlinear Dynamics And Dissipation Of A Vortex Driven By A Strong Microwave Current, W.P.M.R. Pathirana, Alex Gurevich Jan 2021

Effect Of Random Pinning On Nonlinear Dynamics And Dissipation Of A Vortex Driven By A Strong Microwave Current, W.P.M.R. Pathirana, Alex Gurevich

Physics Faculty Publications

We report numerical simulations of a trapped elastic vortex driven by a strong ac magnetic field H(t)=Hsinωt parallel to the surface of a superconducting film. The surface resistance and the power dissipated by an oscillating vortex perpendicular to the film surface were calculated as functions of H and ω for different spatial distributions, densities, and strengths of pinning centers, including bulk pinning, surface pinning, and cluster pinning. Our simulations were performed for both the Bardeen-Stephen viscous vortex drag and the Larkin-Ovchinnikov (LO) drag coefficient η(v) decreasing with the vortex velocity v. The local residual surface resistance Ri(H) …


Electron Tunneling And X-Ray Photoelectron Spectoscopy Studies Of The Superconductiong Properties Of Nitrogen-Doped Niobium Resonator Cavities, Eric M. Lechner, Basu Dev Oli, Junki Makita, Gianluigi Ciovati, Alex Gurevich, Maria Iavarone Jan 2020

Electron Tunneling And X-Ray Photoelectron Spectoscopy Studies Of The Superconductiong Properties Of Nitrogen-Doped Niobium Resonator Cavities, Eric M. Lechner, Basu Dev Oli, Junki Makita, Gianluigi Ciovati, Alex Gurevich, Maria Iavarone

Physics Faculty Publications

We use scanning tunneling microscopy (STM) and spectroscopy (STS), and x-ray photoelectron spectroscopy (XPS) to investigate the effect of nitrogen doping on the surface electronic and chemical structures of cutouts from superconducting Nb radio-frequency cavities. The goal of this work is to get insights into the fundamental physics and materials mechanisms behind the striking decrease of the surface resistance with the radio-frequency magnetic field, which has been observed on N-doped Nb cavities. Our XPS measurements reveal significantly more oxidized Nb 3d states and a thinner metallic suboxide layer on the N-doped Nb surfaces, which is also confirmed by tunneling spectroscopy …


Current-Driven Production Of Vortex-Antivortex Pairs In Planar Josephson Junction Arrays And Phase Cracks In Long-Range Order, Francisco Estellés-Duart, Miguel Ortuño, Andrés M. Somoza, Valerii M. Vinokur, Alex Gurevich Oct 2018

Current-Driven Production Of Vortex-Antivortex Pairs In Planar Josephson Junction Arrays And Phase Cracks In Long-Range Order, Francisco Estellés-Duart, Miguel Ortuño, Andrés M. Somoza, Valerii M. Vinokur, Alex Gurevich

Physics Faculty Publications

Proliferation of topological defects like vortices and dislocations plays a key role in the physics of systems with long-range order, particularly, superconductivity and superfluidity in thin films, plasticity of solids, and melting of atomic monolayers. Topological defects are characterized by their topological charge reflecting fundamental symmetries and conservation laws of the system. Conservation of topological charge manifests itself in extreme stability of static topological defects because destruction of a single defect requires overcoming a huge energy barrier proportional to the system size. However, the stability of driven topological defects remains largely unexplored. Here we address this issue and investigate numerically …


Imaging Of Super-Fast Dynamics And Flow Instabilities Of Superconducting Vortices, L. Embon, Y. Anahory, Ž L. Jelić, E. O. Lachman, Y. Myasoedov, M. E. Huber, G. P. Mikitik, A. V. Silhanek, M. V. Milošević, A Gurevich, E. Z. Zeldov Jan 2017

Imaging Of Super-Fast Dynamics And Flow Instabilities Of Superconducting Vortices, L. Embon, Y. Anahory, Ž L. Jelić, E. O. Lachman, Y. Myasoedov, M. E. Huber, G. P. Mikitik, A. V. Silhanek, M. V. Milošević, A Gurevich, E. Z. Zeldov

Physics Faculty Publications

Quantized magnetic vortices driven by electric current determine key electromagnetic properties of superconductors. While the dynamic behavior of slow vortices has been thoroughly investigated, the physics of ultrafast vortices under strong currents remains largely unexplored. Here, we use a nanoscale scanning superconducting quantum interference device to image vortices penetrating into a superconducting Pb film at rates of tens of GHz and moving with velocities of up to tens of km/s, which are not only much larger than the speed of sound but also exceed the pair-breaking speed limit of superconducting condensate. These experiments reveal formation of mesoscopic vortex channels which …


Measurements Of Rf Properties Of Thin Film Nb3Sn Superconducting Multilayers Using A Calorimetric Technique, S. Sosa-Guitron, A. Gurevich, J. Delayen, E. Chang Beom, C. Sundahl, G. V. Eremeev Jan 2015

Measurements Of Rf Properties Of Thin Film Nb3Sn Superconducting Multilayers Using A Calorimetric Technique, S. Sosa-Guitron, A. Gurevich, J. Delayen, E. Chang Beom, C. Sundahl, G. V. Eremeev

Physics Faculty Publications

Results of RF tests of NB3SN thin film samples related to the superconducting multilayer coating development are presented. We have investigated thin film samples of Nb3Sn/Al2O3/Nb with Nb3Sn layer thicknesses of 50 nm and 100 nm using a Surface Impedance Characterization system. These samples were measured in the temperature range 4 K-19 K, where significant screening by Nb3Sn layers was observed below 16-17 K, consistent with the bulk critical temperature of Nb3Sn.


Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali Jan 2011

Electronically Enhanced Surface Diffusion During Ge Growth On Si(100), Ali Orguz Er, Hani E. Elsayed-Ali

Physics Faculty Publications

The effect of nanosecond pulsed laser excitation on surface diffusion during the growth of Ge on Si(100) at 250 °C was studied. In situ reflection high-energy electron diffraction was used to measure the surface diffusion coefficient while ex situ atomic force microscopy was used to probe the structure and morphology of the grown quantum dots. The results show that laser excitation of the substrate increases the surface diffusion during the growth of Ge on Si(100), changes the growth morphology, improves the crystalline structure of the grown quantum dots, and decreases their size distribution. A purely electronic mechanism of enhanced surface …


Excitation-Induced Germanium Quantum Dot Formation On Si (100)-(2×1), Ali Oguz Er, Hani E. Elsayed-Ali Jan 2010

Excitation-Induced Germanium Quantum Dot Formation On Si (100)-(2×1), Ali Oguz Er, Hani E. Elsayed-Ali

Physics Faculty Publications

The effect of nanosecond pulsed laser excitation on the self-assembly of Ge quantum dots grown by pulsed laser deposition on Si (100)-(2×1) was studied. In situ reflection high-energy electron diffraction and ex situ atomic force microscopy were used to probe the quantum dot structure and morphology. At room temperature, applying the excitation laser decreased the surface roughness of the grown Ge film. With surface electronic excitation, crystalline Ge quantum dots were formed at 250 °C, a temperature too low for their formation without excitation. At a substrate temperature of 390 °C, electronic excitation during growth was found to improve the …


Quantitative Analysis Of Ultra-Fine Goethite In Rust Layer On Steel Using Mossbauer And X-Ray Diffraction Spectroscopy, Masato Yamashita, Toshihei Misawa, H. E. Townsend, D. C. Cook Jan 2000

Quantitative Analysis Of Ultra-Fine Goethite In Rust Layer On Steel Using Mossbauer And X-Ray Diffraction Spectroscopy, Masato Yamashita, Toshihei Misawa, H. E. Townsend, D. C. Cook

Physics Faculty Publications

We have proposed determination procedure of the relative amounts of rust constituents of steel. Mossbauer spectroscopy provides the relative amounts of crystalline rust constituents including ultra-fine crystals. A quantitative analysis of ultra-fine crystals is possible with the resolution of several percent by comparing the Mossbauer results with the relative amounts of rust constituents determined by X-ray diffraction spectroscopy.