Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Characterizing Soil Stiffness Using Thermal Remote Sensing And Machine Learning, Jordan Ewing, T. Oommen, Paramsothy Jayakumar, Russell Alger Jun 2021

Characterizing Soil Stiffness Using Thermal Remote Sensing And Machine Learning, Jordan Ewing, T. Oommen, Paramsothy Jayakumar, Russell Alger

Michigan Tech Publications

Soil strength characterization is essential for any problem that deals with geomechanics, including terramechanics/terrain mobility. Presently, the primary method of collecting soil strength parameters through in situ measurements but sending a team of people out to a site to collect data this has significant cost implications and accessing the location with the necessary equipment can be difficult. Remote sensing provides an alternate approach to in situ measurements. In this lab study, we compare the use of Apparent Thermal Inertia (ATI) against a GeoGauge for the direct testing of soil stiffness. ATI correlates with stiffness, so it allows one to predict …


Leveraging Very-High Spatial Resolution Hyperspectral And Thermal Uav Imageries For Characterizing Diurnal Indicators Of Grapevine Physiology, Matthew Maimaitiyiming, Vasit Sagan, Paheding Sidike, Maitiniyazi Maimaitijiang, Allison J. Miller, Misha Kwasniewski Oct 2020

Leveraging Very-High Spatial Resolution Hyperspectral And Thermal Uav Imageries For Characterizing Diurnal Indicators Of Grapevine Physiology, Matthew Maimaitiyiming, Vasit Sagan, Paheding Sidike, Maitiniyazi Maimaitijiang, Allison J. Miller, Misha Kwasniewski

Michigan Tech Publications

Efficient and accurate methods to monitor crop physiological responses help growers better understand crop physiology and improve crop productivity. In recent years, developments in unmanned aerial vehicles (UAV) and sensor technology have enabled image acquisition at very-high spectral, spatial, and temporal resolutions. However, potential applications and limitations of very-high-resolution (VHR) hyperspectral and thermal UAV imaging for characterization of plant diurnal physiology remain largely unknown, due to issues related to shadow and canopy heterogeneity. In this study, we propose a canopy zone-weighting (CZW) method to leverage the potential of VHR (≤9 cm) hyperspectral and thermal UAV imageries in estimating physiological indicators, …


Quantifying Surface Severity Of The 2014 And 2015 Fires In The Great Slave Lake Area Of Canada, Nancy H. F. French, Jeremy Graham, Ellen Whitman, Laura Bourgeau-Chavez Oct 2020

Quantifying Surface Severity Of The 2014 And 2015 Fires In The Great Slave Lake Area Of Canada, Nancy H. F. French, Jeremy Graham, Ellen Whitman, Laura Bourgeau-Chavez

Michigan Tech Publications

The focus of this paper was the development of surface organic layer severity maps for the 2014 and 2015 fires in the Great Slave Lake area of the Northwest Territories and Alberta, Canada, using multiple linear regression models generated from pairing field data with Landsat 8 data. Field severity data were collected at 90 sites across the region, together with other site metrics, in order to develop a mapping approach for surface severity, an important metric for assessing carbon loss from fire. The approach utilised a combination of remote sensing indices to build a predictive model of severity that was …


Determining Remote Sensing Spatial Resolution Requirements For The Monitoring Of Harmful Algal Blooms In The Great Lakes, John Lekki, Eric Deutsch, Michael Sayers, Karl Bosse, Robert Anderson, Roger Tokars, Reid W. Sawtell Jun 2019

Determining Remote Sensing Spatial Resolution Requirements For The Monitoring Of Harmful Algal Blooms In The Great Lakes, John Lekki, Eric Deutsch, Michael Sayers, Karl Bosse, Robert Anderson, Roger Tokars, Reid W. Sawtell

Michigan Tech Publications

Harmful algal blooms (HABs) have become a major health and environmental concern in the Great Lakes. In 2014, severe HABs prompted the State of Ohio to request NASA Glenn Research Center (GRC) to assist with monitoring algal blooms in Lake Erie. The most notable species of HAB is Microcystis aeruginosa, a hepatotoxin producing cyanobacteria that is responsible for liver complications for humans and other fauna that come in contact with these blooms. NASA GRC conducts semiweekly flights in order to gather up-to-date imagery regarding the blooms' spatial extents and concentrations. Airborne hyperspectral imagery is collected using two hyperspectral imagers, HSI-2 …


Spatial-Temporal Variability Of In Situ Cyanobacteria Vertical Structure In Western Lake Erie: Implications For Remote Sensing Observations, Karl Bosse, Michael Sayers, Robert Shuchman, Gary L. Fahnenstiel, Steven A. Ruberg, David L. Fanslow, Dack G. Stuart, Thomas H. Johengen, Ashley M. Burtner Feb 2019

Spatial-Temporal Variability Of In Situ Cyanobacteria Vertical Structure In Western Lake Erie: Implications For Remote Sensing Observations, Karl Bosse, Michael Sayers, Robert Shuchman, Gary L. Fahnenstiel, Steven A. Ruberg, David L. Fanslow, Dack G. Stuart, Thomas H. Johengen, Ashley M. Burtner

Michigan Tech Publications

Remote sensing has provided expanded temporal and spatial range to the study of harmful algal blooms (cyanoHABs) in western Lake Erie, allowing for a greater understanding of bloom dynamics than is possible through in situ sampling. However, satellites are limited in their ability to specifically target cyanobacteria and can only observe the water within the first optical depth. This limits the ability of remote sensing to make conclusions about full water column cyanoHAB biomass if cyanobacteria are vertically stratified. FluoroProbe data were collected at nine stations across western Lake Erie in 2015 and 2016 and analyzed to characterize spatio-temporal variability …


Utilizing Vegetation Indices As A Proxy To Characterize The Stability Of A Railway Embankment In A Permafrost Region, Priscilla Addison, Pasi T. Lautala, Thomas Oommen Nov 2016

Utilizing Vegetation Indices As A Proxy To Characterize The Stability Of A Railway Embankment In A Permafrost Region, Priscilla Addison, Pasi T. Lautala, Thomas Oommen

Michigan Tech Publications

Degrading permafrost conditions around the world are posing stability issues for infrastructure constructed on them. Railway lines have exceptionally low tolerances for differential settlements associated with permafrost degradation due to the potential for train derailments. Railway owners with tracks in permafrost regions therefore make it a priority to identify potential settlement locations so that proper maintenance or embankment stabilization measures can be applied to ensure smooth and safe operations. The extensive discontinuous permafrost zone along the Hudson Bay Railway (HBR) in Northern Manitoba, Canada, has been experiencing accelerated deterioration, resulting in differential settlements that necessitate continuous annual maintenance to avoid …


Monitoring Automotive Particulate Matter Emissions With Lidar: A Review, Claudio Mazzoleni, Hampden D. Kuhns, Hans Moosmüller Apr 2010

Monitoring Automotive Particulate Matter Emissions With Lidar: A Review, Claudio Mazzoleni, Hampden D. Kuhns, Hans Moosmüller

Michigan Tech Publications

Automotive particulate matter (PM) causes deleterious effects on health and visibility. Physical and chemical properties of PM also influence climate change. Roadside remote sensing of automotive emissions is a valuable option for assessing the contribution of individual vehicles to the total PM burden. LiDAR represents a unique approach that allows measuring PM emissions from in-use vehicles with high sensitivity. This publication reviews vehicle emission remote sensing measurements using ultraviolet LiDAR and transmissometer systems. The paper discusses the measurement theory and documents examples of how these techniques provide a unique perspective for exhaust emissions of individual and groups of vehicles.