Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Masters Theses

Machine Learning

Industrial Engineering

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

A Machine Learning Approach For Predicting Clinical Trial Patient Enrollment In Drug Development Portfolio Demand Planning, Ahmed Shoieb May 2023

A Machine Learning Approach For Predicting Clinical Trial Patient Enrollment In Drug Development Portfolio Demand Planning, Ahmed Shoieb

Masters Theses

One of the biggest challenges the clinical research industry currently faces is the accurate forecasting of patient enrollment (namely if and when a clinical trial will achieve full enrollment), as the stochastic behavior of enrollment can significantly contribute to delays in the development of new drugs, increases in duration and costs of clinical trials, and the over- or under- estimation of clinical supply. This study proposes a Machine Learning model using a Fully Convolutional Network (FCN) that is trained on a dataset of 100,000 patient enrollment data points including patient age, patient gender, patient disease, investigational product, study phase, blinded …


Developing Leading And Lagging Indicators To Enhance Equipment Reliability In A Lean System, Dhanush Agara Mallesh Dec 2017

Developing Leading And Lagging Indicators To Enhance Equipment Reliability In A Lean System, Dhanush Agara Mallesh

Masters Theses

With increasing complexity in equipment, the failure rates are becoming a critical metric due to the unplanned maintenance in a production environment. Unplanned maintenance in manufacturing process is created issues with downtimes and decreasing the reliability of equipment. Failures in equipment have resulted in the loss of revenue to organizations encouraging maintenance practitioners to analyze ways to change unplanned to planned maintenance. Efficient failure prediction models are being developed to learn about the failures in advance. With this information, failures predicted can reduce the downtimes in the system and improve the throughput.

The goal of this thesis is to predict …


Explorations Into Machine Learning Techniques For Precipitation Nowcasting, Aditya Nagarajan Mar 2017

Explorations Into Machine Learning Techniques For Precipitation Nowcasting, Aditya Nagarajan

Masters Theses

Recent advances in cloud-based big-data technologies now makes data driven solutions feasible for increasing numbers of scientific computing applications. One such data driven solution approach is machine learning where patterns in large data sets are brought to the surface by finding complex mathematical relationships within the data. Nowcasting or short-term prediction of rainfall in a given region is an important problem in meteorology. In this thesis we explore the nowcasting problem through a data driven approach by formulating it as a machine learning problem.

State-of-the-art nowcasting systems today are based on numerical models which describe the physical processes leading to …