Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Conical Folds -- An Artifact Of Using Simple Geometric Shapes To Describe A Complex Geologic Structure, Avery Joseph Welker Jan 2018

Conical Folds -- An Artifact Of Using Simple Geometric Shapes To Describe A Complex Geologic Structure, Avery Joseph Welker

Masters Theses

"Accurate representation of the 3D shapes of natural folds is essential to characterization of the dynamic models for fold formation. Geometrical analysis of folds commonly relies upon analyzing patterns defined by the variation in the orientation of poles to planar surfaces deformed by a shortening event when plotted using graphical calculators (e.g., stereogram, polar tangent diagrams) to interpret the shape of folds. Stereograms for which orientation data define small circles are classified as non-cylindrical regular folds and are interpreted as "conical folds," where the shape of the fold is represented by a cone that terminates at a point. Utilizing similar …


Evolution Of Off-Fault Deformation Along Analog Strike-Slip Faults, Alexandra E. Hatem Nov 2014

Evolution Of Off-Fault Deformation Along Analog Strike-Slip Faults, Alexandra E. Hatem

Masters Theses

Strike-slip faults evolve to accommodate more fault slip, resulting in less off-fault deformation. In analog experiments, the measured fault slip to off-fault deformation ratios are similar to those measured in crustal strike-slip systems, such as the San Andreas fault system. Established planar faults have the largest fault slip to off-fault deformation ratio of ~0.98. In systems without a pre-existing fault surface, crustal thickness and basal detachment conditions affect shear zone width and roughness. However, once the applied plate displacement is 1-2 times the crustal thickness, partitioning of deformation between fault slip and off-fault distributed shear is >0.90, regardless of the …