Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Master's Theses

Computer Sciences

Simulation

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Modeling Covid-19 Spread Using An Agent-Based Network, Stephen Yh Hung Jun 2021

Modeling Covid-19 Spread Using An Agent-Based Network, Stephen Yh Hung

Master's Theses

Beginning in 2019 and quickly spreading internationally, the Coronavirus disease Covid-19 became the first pandemic that many people have witnessed firsthand along with the severe disruption to their daily lives. A key field of research for Covid-19 that is studied by epidemiologists, biologists, and computer scientists alike is modeling the spread of Covid-19 in order to better predict future outbreaks of the pandemic and evaluate potential strategies to reduce infections, hospitalizations, and deaths.

This thesis proposes a method of modeling Covid-19 spread and interventions for local environments based on different levels of perspective. The goal for this thesis is to …


Physics Engine On The Gpu With Opengl Compute Shaders, Quan Huy Minh Bui Mar 2021

Physics Engine On The Gpu With Opengl Compute Shaders, Quan Huy Minh Bui

Master's Theses

Any kind of graphics simulation can be thought of like a fancy flipbook. This notion is, of course, nothing new. For instance, in a game, the central computing unit (CPU) needs to process frame by frame, figuring out what is happening, and then finally issues draw calls to the graphics processing unit (GPU) to render the frame and display it onto the monitor. Traditionally, the CPU has to process a lot of things: from the creation of the window environment for the processed frames to be displayed, handling game logic, processing artificial intelligence (AI) for non-player characters (NPC), to the …


Dataset And Evaluation Of Self-Supervised Learning For Panoramic Depth Estimation, Ryan Nett Dec 2020

Dataset And Evaluation Of Self-Supervised Learning For Panoramic Depth Estimation, Ryan Nett

Master's Theses

Depth detection is a very common computer vision problem. It shows up primarily in robotics, automation, or 3D visualization domains, as it is essential for converting images to point clouds. One of the poster child applications is self driving cars. Currently, the best methods for depth detection are either very expensive, like LIDAR, or require precise calibration, like stereo cameras. These costs have given rise to attempts to detect depth from a monocular camera (a single camera). While this is possible, it is harder than LIDAR or stereo methods since depth can't be measured from monocular images, it has to …


Simulating Epidemics And Interventions On High Resolution Social Networks, Christopher E. Siu Jun 2019

Simulating Epidemics And Interventions On High Resolution Social Networks, Christopher E. Siu

Master's Theses

Mathematical models of disease spreading are a key factor of ensuring that we are prepared to deal with the next epidemic. They allow us to predict how an infection will spread throughout a population, thereby allowing us to make intelligent choices when attempting to contain the disease. Whether due to a lack of empirical data, a lack of computational power, a lack of biological understanding, or some combination thereof, traditional models must make sweeping assumptions about the behavior of a population during an epidemic.

In this thesis, we implement granular epidemic simulations using a rich social network constructed from real-world …


Eulerian On Lagrangian Cloth Simulation, Kyle C. Piddington Jun 2017

Eulerian On Lagrangian Cloth Simulation, Kyle C. Piddington

Master's Theses

This thesis introduces a novel Eulerian-on-Lagrangian (EoL) approach for simulating cloth. This approach allows for the simulation of traditionally difficult cloth scenarios, such as draping and sliding cloth over sharp features like the edge of a table. A traditional Lagrangian approach models a cloth as a series of connected nodes. These nodes are free to move in 3d space, but have difficulty with sliding over hard edges. The cloth cannot always bend smoothly around these edges, as motion can only occur at existing nodes. An EoL approach adds additional flexibility to a Lagrangian approach by constructing special Eulerian on Lagrangian …


Smarticles: A Method For Identifying And Correcting Instability And Error Caused By Explicit Integration Techniques In Physically Based Simulations, Susan Aileen Marano Jun 2014

Smarticles: A Method For Identifying And Correcting Instability And Error Caused By Explicit Integration Techniques In Physically Based Simulations, Susan Aileen Marano

Master's Theses

Using an explicit integration method in physically based animations has many advantages including conceptual and computational simplicity, however, it re- quires small time steps to ensure low numerical instability. Simulations with large numbers of individually interacting components such as cloth, hair, and fluid models, are limited by the sections of particles most susceptible to error. This results in the need for smaller time steps than required for the majority of the system. These sections can be diverse and dynamic, quickly changing in size and location based on forces in the system. Identifying and handling these trou- blesome sections could allow …