Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Physical Sciences and Mathematics

The Long-Term Outlook Of The Mississippi-Atchafalaya Bifurcation: A Convergence Of Engineering, Economics, And Deltaic Evolution, Thomas Mitchell Andrus Apr 2020

The Long-Term Outlook Of The Mississippi-Atchafalaya Bifurcation: A Convergence Of Engineering, Economics, And Deltaic Evolution, Thomas Mitchell Andrus

LSU Doctoral Dissertations

The most recent and currently active delta lobe of the Mississippi River (MR) is the Atchafalaya-Wax Lake lobe, which was initiated approximately 400 years ago as a result of MR stream capture by the Atchafalaya River (AR). This capture process accelerated in the early to mid-1900s but further progress was prevented by construction and operation of the Old River Control Structure (ORCS) Complex. Many recent studies indicate that MR system below the ORCS is on a retreating geologic trajectory due to contributing factors such as sea level rise, subsidence, faulting, and declining hydraulic stream power. Diversions along the Lower MR …


Numerical Experiment Of Sediment Dynamics Over A Dredged Pit On The Louisiana Shelf, Nazanin Chaichitehrani Mar 2018

Numerical Experiment Of Sediment Dynamics Over A Dredged Pit On The Louisiana Shelf, Nazanin Chaichitehrani

LSU Doctoral Dissertations

Sediment transport over Sandy Point dredge pit in the northern Gulf of Mexico was examined using field measurements and a finely resolved numerical model. Delft3D model with well-vetted computational grid and input parameters was used. Numerical experiments were performed to examine the effect of wind-generated waves, wind-driven currents and their interaction on sediment dynamics in our study area during a cold front in November 2014 and fair-weather conditions between July and August of 2015. Sediment dispersal from the lower Mississippi River, sediment resuspension, transport and deposition with high spatial and temporal resolution were simulated. A reliable satellite-derived near-surface suspended particulate …


Assessing Morphodynamics Of The Lower Mississippi River From 1985 To 2015 With Remote Sensing And Gis Techniques, Bo Wang Nov 2017

Assessing Morphodynamics Of The Lower Mississippi River From 1985 To 2015 With Remote Sensing And Gis Techniques, Bo Wang

LSU Doctoral Dissertations

The Lower Mississippi River is one of the most highly engineered rivers in the world. The river is now completely regulated by a combination of levees, artificial cutoffs, bank revetments, and dike fields; however, the river engineering has also complicated the geomorphological response to the sediment brought in the river. This dissertation research examined morphodynamics of the middle portion of the Lower Mississippi River from Vicksburg, Mississippi (river kilometer: 737) to Red River Landing, Louisiana (river kilometer: 486) to elucidate river engineering effects on sediment transport, storage, and distribution. The Old River Control Structure (ORCS) diverts approximately 25% of the …


Linking Nitrogen Biogeochemistry To Different Stages Of Wetland Soil Development In The Mississippi River Delta, Louisiana, Kelly Marie Henry Jan 2012

Linking Nitrogen Biogeochemistry To Different Stages Of Wetland Soil Development In The Mississippi River Delta, Louisiana, Kelly Marie Henry

LSU Doctoral Dissertations

Extensive wetland loss and nutrient-enhanced eutrophication occur across the Mississippi River delta and include newly emergent landscapes, in the early stages of ecological succession, and older landscape formations, with fully developed ecological communities. Here I tested how the anthropogenic effects of a climate-induced vegetation shift, an oil spill, and nitrate-enrichment regulate the principal environmental factors controlling nutrient biogeochemistry in wetland soils at different stages of development throughout the Mississippi River delta. In the older, transgressing Barataria basin, there was no clear effect of the climate-induced species shift from Spartina alterniflora Loisel to Avicennia germinans L. on soil nutrient chemistry. Observed …


Nitrogen And Carbon Export To The Gulf Of Mexico By The Atchafalaya River, A Major Distributary Of The Mississippi River, April Elizabeth Bryantmason Jan 2012

Nitrogen And Carbon Export To The Gulf Of Mexico By The Atchafalaya River, A Major Distributary Of The Mississippi River, April Elizabeth Bryantmason

LSU Doctoral Dissertations

Summer hypoxia in the Northern Gulf of Mexico has been attributed to large nutrient inputs, especially nitrate-nitrogen, from the Mississippi-Atchafalaya River system. The 2008 Gulf Hypoxia Action Plan calls for river corridor wetland restoration to reduce nitrate loads, but it is largely unknown how effective riverine wetland systems in the lower Mississippi River (MR) are for nitrate removal. This dissertation research examined nitrate and carbon export from the Atchafalaya River (AR) to: (1) determine nitrate processing by a river swamp basin under varied seasons, (2) investigate nitrate retention and processing in the AR during a major flood event, and (3) …


Microphytobenthos Of The Northern Gulf Of Mexico Hypoxic Area And Their Role In Oxygen Dynamics, Melissa Millman Baustian Jan 2011

Microphytobenthos Of The Northern Gulf Of Mexico Hypoxic Area And Their Role In Oxygen Dynamics, Melissa Millman Baustian

LSU Doctoral Dissertations

The presence or absence of microphytobenthos on the seafloor provides clues about whether benthic oxygen evolution contributes significantly to the oxygen budget of the hypoxic area in the northern Gulf of Mexico. Hypoxia (oxygen < 2 mg l-1) creates inadequate concentrations of dissolved oxygen to support most organisms, such as fish, shrimp and crabs, and occurs over large areas of the Louisiana continental shelf from spring through summer in most years. Oxygen production by benthic autotrophs may offset a decline in oxygen concentrations if there is a functioning community and sufficient light. I sampled three stations (14, 20 and 23 m depths) ~ 100 km west of the Mississippi River over three hypoxic annual cycles (2006 – 2008), and 11 stations along a 14 - 20 m contour on the shelf in late-July in 2006, 2007 and 2008. I used microscopy and high-performance liquid chromatography to estimate the biomass and composition of phytoplankton and microphytobenthos. The potential seasonal oxygen production was estimated in 2007 and 2008 by incubating coupled light/dark sediment cores and bottom water from two stations. The sediment community (cells > 3 um) differed from those in the water column and were frequently benthic pennate diatoms and filamentous cyanobacteria (58-88% seasonally and 1-99% in mid-summer). The concentration of microphytobenthic biomass was usually < 2.0 ug g dry sed-1, and various biotic parameters were influenced by light at the seafloor. Declines in dissolved oxygen over a seasonal cycle in 2007 and 2008 were affected more by the initial dissolved oxygen concentration than by the presence of microphytobenthos that could generate oxygen. The sediment (1.2 - 27.3 mmol O2 m-2 d-1, n = 97) and bottom-water (1.1 - 17.5 mmol m-2 d-1, n = 23) oxygen consumption rates were within the range of the few previously-reported data. This work adds to these data and also provides the only sediment oxygen consumption rates at fixed sites over seasonal time scales. These results provide critical input to three-dimensional, physical-biological models of oxygen dynamics for this hypoxic area.


Modeling The Impacts Of Pulsed Riverine Inflows On Hydrodynamics And Water Quality In The Barataria Bay Estuary, Anindita Das Jan 2010

Modeling The Impacts Of Pulsed Riverine Inflows On Hydrodynamics And Water Quality In The Barataria Bay Estuary, Anindita Das

LSU Doctoral Dissertations

Eutrophication and coastal wetland loss are the major environmental problems affecting estuaries around the world. In Louisiana, controlled diversions of the Mississippi River water back into coastal wetlands are thought to be an important engineering solution that could reverse coastal land loss. There are concerns, however, that freshwater diversions may increase nutrient inputs and create severe eutrophication problems in estuaries and wetlands adjacent to the diversion sites. My dissertation research concerns modeling the effects of the observed and hypothetical freshwater diversion discharges on the hydrodynamics, salinity and water quality in the Barataria estuary, a deltaic estuary in south Louisiana. This …


Assessment Of Oxygen Sources And Sinks In The Northern Gulf Of Mexico Using Stable Oxygen Isotopes, Zoraida Jazmin Quinones-Rivera Jan 2008

Assessment Of Oxygen Sources And Sinks In The Northern Gulf Of Mexico Using Stable Oxygen Isotopes, Zoraida Jazmin Quinones-Rivera

LSU Doctoral Dissertations

Coastal hypoxia (< 2 mg O2L-1) represents a global problem that continues to worsen as nutrient fluxes to these areas increase. The second largest zone of human-induced hypoxia is located on the Louisiana continental shelf where hypoxic bottom waters commonly occur during summertime. This region is strongly impacted by the large flux of freshwater and nutrients from the Mississippi River, which influences both biological and physical processes that control oxygen dynamics. Yet, based on oxygen concentration measurements alone, it is difficult to separate the effects of biological factors from physical factors. To address this problem, I used a dual budget approach to assess the importance of oxygen sources and sinks on the Louisiana continental shelf. The dual budget was based on using stable oxygen isotopes (ä18O) in combination with conventional oxygen concentration measurements. To analyze temporal trends, surface and bottom water samples were collected monthly between July 2001 and July 2003 along an onshore-offshore transect. For better spatial resolution, shelfwide sampling was conducted extending from the Mississippi River Delta to the Louisiana-Texas border in the month of July of 2001, 2002, and 2003. Oxygen saturations values ranged between 180% at the surface and almost 0% close to the bottom with a corresponding range of ä18O values from 15‰ to 50‰. Biological parameters were important during all seasons for surface oxygen dynamics. The effects of physical factors were less apparent, except during severe physical disturbances. Bottom water oxygen dynamics showed clear seasonal signals of high oxygen depletion and larger contributions of benthic respiration during the summer, which corresponded to the strong stratification of the water column. In bottom waters, summer oxygen depletion was predominantly due to benthic respiration, accounting for about 73%, 80% and 60% of the total oxygen loss for 2001, 2002 and 2003 respectively. Model estimates of production/respiration (P/R) ratio during the July shelfwide cruises indicated that surface waters were productive with an average calculated P/R above 1. Depth stratified sampling (5 m intervals), which started in July 2002, showed that productivity in the mixed layer (5 to 10 m) was not homogeneous. Calculated P/R exceeded 1 only in the surface layer, while at 5 m P/R was approximately 1 and at a depth of 10 m, P/R was less than 1. Additionally, hypoxic conditions were only detected within 5 m of the bottom sediments. The dual budget approach yielded new estimates of productivity dynamics in surface waters and of sediment oxygen demand in bottom waters. For the first time, this study provided routine insight into productivity and respiration dynamics over large temporal and spatial scales. This could not have been accomplished using traditional methods because they commonly rely on time-consuming incubations. The study has shown that respiration dynamics in bottom waters vary seasonally with higher contribution of benthic respiration during stratified summer conditions and prevalent water column respiration during fall and winter. In contrast, seasonality in surface waters was less pronounced as productivity was more dependent on (salinity-inferred) nutrient supply than climatic forcing.